Skip to main content

Powder compacts and green bodies for porous materials

  • Chapter
Porous Materials

Part of the book series: Materials Technology Series ((MTEC,volume 4))

Abstract

Porous ceramics or metals with pore size from sub-microns to sub-millimeters have been produced conventionally by sintering powder compacts. These porous materials have been used in industrial applications such as filters, catalysis beds and gas sensors. Powder compacts usually have open porosity of around 0.5. Porous materials can be obtained by partially densifying powder compacts. In order to produce open porous materials with desired properties, it is necessary to control powder properties, green body properties and sintering processes. In particular, powder compacts and green bodies are very important in the fabrication of porous materials with desired properties. Here the term ‘green’ or ‘green body’ means a presintered body which is an as-formed body from powder or fiber. These methods of obtaining densified materials are often different from those for sintering porous solids. In this chapter, each process in sintering for producing porous materials is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. German, R. M. (1984) Powder Metallurgy Science, Metal Powder Industries Federation, NY, p. 39.

    Google Scholar 

  2. Reed, J. S. (1988) Introduction to the Principles of Ceramic Processing, John Wiley & Sons, NY, pp. 259–260.

    Google Scholar 

  3. Koch, C. C. and Whittenberger, J. D. (1996) Intermetallics, 4, 339–355.

    Article  CAS  Google Scholar 

  4. Dowson, G. (1990) Powder Metallurgy-the Process and its Products, Adam Hilger, Bristol, pp. 117–120.

    Google Scholar 

  5. German, R.M. (1984) Powder Metallurgy Science, Metal Powder Industries Federation, NY, pp. 73–86.

    Google Scholar 

  6. McColm, I. J. (1994) Dictionary of Ceramics Science and Engineering, 2nd edn. Plenum Press, NY, p. 137.

    Book  Google Scholar 

  7. Steeds, W. (1964) Engineering Materials, Machine Tools and Processes, Longmans, London, p. 324.

    Google Scholar 

  8. German, R. M. (1984) Powder Metallurgy Science, Metal Powder Industries Federation, NY, pp. 101–104.

    Google Scholar 

  9. Konakawa, Y. and Ishizaki, K. (1991) Powder Technol., 63, 241–246.

    Article  Google Scholar 

  10. Uematsu, K., Kim, J. Y., Uchida N. and Saito, K. (1990) J. Am. Ceram. Soc., 73, 2555–2557.

    Article  CAS  Google Scholar 

  11. Kondo, Y., Hashizuka, Y., Nakahara, M., and Yokota, K. (1995) J. Ceram. Soc. Jpn., 103, 1037–1040.

    Article  CAS  Google Scholar 

  12. Sarkar, N. and Greminger, G. (1983) Am. Ceram. Soc. Bull., 62, 1280–1284.

    CAS  Google Scholar 

  13. Kuczynski C. and Zaplotinsky, I. (1956) Trans. AIME, J. Metals, 206, 215.

    Google Scholar 

  14. Dowson, G. (1990) Powder Metallurgy-the Process and its Products, Adam Hilger, Bristol, p. 46.

    Google Scholar 

  15. Ishimaru, Y. (1993) Fundamentals and Applications of Powder Metallurgy, Gijutsu Syoin, Tokyo, p.65.

    Google Scholar 

  16. Thompson, R. A. (1981) Am. Ceram. Soc. Bull., 60, 237–243.

    Google Scholar 

  17. Reed, J. S. (1988) Introduction to the Principles of Ceramic Processing, John Wiley & Sons, NY, pp. 348–349.

    Google Scholar 

  18. Matsuo, Y., Nishimura, T., Jinbo, K. and Yasuda, K. (1987) J. Ceram. Soc. Jpn. Intl. Edn., 95, 1169–1173.

    Google Scholar 

  19. Kamiya, H., Suzuki, H., Kato, D. and Jimbo, G. (1993) J. Am. Ceram. Soc., 76, 54–64.

    Article  CAS  Google Scholar 

  20. Hamada, Y., Ishizaki, K. and Briceño, J. (1990) J. Ceram. Soc. Jpn. Intl. Edn., 98, 343–347.

    Google Scholar 

  21. Anko, M., Yamamoto, S., Konakawa, Y., Briceño J. and Ishizaki, K. (1993) J. Ceram. Soc. Jpn. Intl. Edn., 101, 1044–1046

    Article  Google Scholar 

  22. Reed, J. S. (1988) Introduction to the Principles of Ceramic Processing, John Wiley & Sons, NY, p. 380.

    Google Scholar 

  23. Blanchard, E. G. (1988) Am. Ceram. Soc. Bull., 67, 1680–1683.

    CAS  Google Scholar 

  24. Blanchard, E. G. (1990) Ceram. Eng. Sci. Proc., 11, 1797–1803.

    Article  Google Scholar 

  25. Kondo, Y, Hashizuka, Y, Okada, S. and Shibayama, M. (1993) Ceramic Transaction Vol. 31: Porous Materials, (eds K. Ishizaki, L. Sheppard, S. Okada, T. Hamasaki and B. Huybrechts), The American Ceramic Society, OH, pp. 325–334.

    Google Scholar 

  26. Suzuki, H., Takagi, S., Morimitsu, H. and Hirano, S. (1992) J. Ceram. Soc. Jpn., 100, 272–275.

    Article  CAS  Google Scholar 

  27. Bonekamp, B. C., Schoute, M. J. and Goris, M. J. A. A. (1989) Euro-Ceramics Vol.1.Processing of Ceramics, (eds G. de With, R. A. Terpstra and R. Metselaar), Elsevier Science Publishers, London, pp. 1.223–1.227.

    Google Scholar 

  28. Isomura, K., Kamakura, K., Funabashi, T. and Ogasahara, K. (1992) Kawasaki Steel Report, 24, 142–147.

    CAS  Google Scholar 

  29. Isomura, K. (1990) Nikkei Mechanical, Dec., 68-75.

    Google Scholar 

  30. Lachman, I. M., Bagley, R. D. and Lewis, R. M. (1981) Am. Ceram. Soc. Bull., 60, 202–206.

    CAS  Google Scholar 

  31. Trimm, D. L. and Stainslaus, A. (1986) Appl. Catalysis, 21, 215–238.

    Article  CAS  Google Scholar 

  32. Ryshkewitch, E. (1953) J. Am. Ceram. Soc., 36, 65–68

    Article  Google Scholar 

  33. Davies, G. J. and Zhen, S. (1983) J. Mater. Sci., 18, 1899-1911.

    Google Scholar 

  34. Shapovalov, V. (1994) MRS Bull., 19[4], 24–28.

    CAS  Google Scholar 

  35. Abe, H., Seki, H., Fukunaga A. and Egashira, M. (1992) J. Ceram. Soc. Jpn., 100, 33–37.

    Article  CAS  Google Scholar 

  36. Yoon, K. H. and Lee, M. J. (1991) Ferroelectrics, 119, 53–60.

    Article  CAS  Google Scholar 

  37. Hayashi, T., Sugihara S. and Okazaki, K. (1991) Jpn. J. Appl. Phys., 30, 2243–2246.

    Article  CAS  Google Scholar 

  38. Seki, Y., Kose, S., Kodarna, T., Kadota, M., Ogura, T., Tanimoto, K. and Matsubara, I. (1988) J. Ceram. Soc. Jpn., 96, 831–836

    Article  CAS  Google Scholar 

  39. Seki, Y., Kose, S., Kodarna, T., Kadota, M., Ogura, T., Tanimoto, K. and Matsubara, I. (1988) J. Ceram. Soc. Jpn., 96, 920–924.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ishizaki, K., Komarneni, S., Nanko, M. (1998). Powder compacts and green bodies for porous materials. In: Porous Materials. Materials Technology Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5811-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5811-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-71110-7

  • Online ISBN: 978-1-4615-5811-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics