Skip to main content

Abstract

In this chapter, a hybrid approach for stock market forecasting is presented. It allows to develop a mixture of hybrid experts, each consisting of a genetic classifier and an associated artificial neural network. The resulting experts have been applied to stock market forecasting using technical trading rules as genetic inputs and other inputs—in particular past quotations—for the neural networks. In particular, the former are used to find quasi-stationary regimes within the financial data series, whereas the latter are assigned the task of making “context-dependent” predictions on the next day trend of the market. To this end, a novel kind of feedforward artificial neural network has been defined, allowing to implement suitable predictors without being compelled to exploit more complex neural architectures. Test runs have been performed on some well-known stock market indexes, also taking into account trading commissions. The tests pointed to the good forecasting capability of the proposed approach, which repeatedly outperformed the buy-and-hold strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achelis, S. B. (1995). Technical Analysis from A to Z, 2nd ed. Chicago: Irwin Professional Publishing

    Google Scholar 

  • Bengio Y. and F. Gingras (1998). “Handling Asynchronous or Missing Data with Recurrent Networks,” International Journal of Computational Intelligence and Organizations, 1(3), 154–163.

    Google Scholar 

  • Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression Trees. Belmont, CA: Wadsworth International Group.

    Google Scholar 

  • Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial Markets. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Campolucci, P., A. Uncini, F. Piazza, and B. D. Rao (1999). “On-Line Learning Algorithms for Locally Recurrent Neural Networks,” IEEE Transactions on Neural Networks, 10(2), 253–271.

    Article  Google Scholar 

  • Castiglione, F. (2001). “Forecasting Price Increments Using an Artificial Neural Network,” Advances in Complex Systems, 4(1), 45–56.

    Article  Google Scholar 

  • Clark, P. and T. Niblett (1989). “The CN2 Induction Algorithm,” Machine Learning Journal, 3(4), 261–283.

    Google Scholar 

  • Cover T. M. and P. E. Hart (1967). “Nearest Neighbor Pattern Classification,” IEEE Transactions on Information Theory, 13(1), 21–27.

    Article  Google Scholar 

  • Deboeck G. (1993). “Neural, Genetic, and Fuzzy Approaches to Design of Trading Systems,” Proceedings of the 2nd Annual International Conference on AI Applications on Wall Street: Tactical and Strategic Computing Technologies, 184–193.

    Google Scholar 

  • Fahlmann S. E. and C. Lebiere (1990). The Cascade-Correlation Learning Architecture, Technical Report CMU-CS-90-100, Carnegie Mellon University.

    Google Scholar 

  • Fama E. F. (1965). “The Behavior of Stock Market Prices,” The Journal of Business, 38, 34–105.

    Article  Google Scholar 

  • Friedman, J. H. (1991). “Multivariate Adaptive Regression Splines,” Annals of Statistics, 19(1), 1–141.

    Article  Google Scholar 

  • Friedman J. H., F. Baskett, and L. J. Shustek (1975). “An Algorithm for Finding Nearest Neighbors,” IEEE Transactions On Computers, 24(10), 1000–1006.

    Article  Google Scholar 

  • Giles, C. L., S. Lawrence, and A. Chung Tsoi (1997). “Rule Inference for Financial Prediction using Recurrent Neural Networks,” Proceedings of IEEE/IAFE Conference on Computational Intelligence for Financial Engineering (CIFE), 253–259.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

    Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton University Press.

    Google Scholar 

  • Hardie, W., H. Lutkepohl, and R. Chen (1997). “A Review of Non-parametric Time Series Analysis,” International Statistical Review, 65, 49–72.

    Article  Google Scholar 

  • Hawawini, G. and D. B. Keim (1995). “On the Predictability of Common Stock Returns: World-wide Evidence,” in R.A. Jarrow, V. Maksimovic and W.T. Ziemba (eds.), Handbook in Operations Research and Management Science, 9, 497–544. Amsterdam: North-Holland.

    Google Scholar 

  • Hellström, T. and K. Holmström (1997). Predicting the Stock Market, Technical Report IMa-TOM-1997-07. Department of Mathematics and Physics, Malardalen University, Sweden.

    Google Scholar 

  • Holland, J. H. (1976). “Adaptation,” in R. Rosen and F. M. Snell (eds.), Progress in Theoretical Biology, 4, 263–293. New York: Academic Press.

    Google Scholar 

  • Holland, J. H. (1986). “Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems,” in R.S. Michalski, J. Carbonell, and M. Mitchell (eds.), Machine Learning II, 593–623. Morgan Kaufmann.

    Google Scholar 

  • Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991). “Adaptive Mixtures of Local Experts,” Neural Computation, 3, 79–87.

    Article  Google Scholar 

  • Jordan, M. I. and R. A. Jacobs (1992). “Hierarchies of Adaptive Experts,” in J. Moody, S. Hanson, and R. Lippman (eds.), Advances in Neural Information Processing Systems, 4, 985–993. Morgan Kaufmann.

    Google Scholar 

  • Jordan, M. I. and R. A. Jacobs (1994). “Hierarchical Mixtures of Experts and the EM Algorithm,” Neural Computation, 6, 181–214.

    Article  Google Scholar 

  • Fu, K. and W. Xu (1997). “Training Neural Network with Genetic Algorithms for Forecasting the Stock Price Index,” Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, 1, 401–403.

    Google Scholar 

  • Kantz, H. and T. Schreiber (1997). Nonlinear Time Series Analysis, Cambridge Nonlinear Science Series 7. Cambridge University Press.

    Google Scholar 

  • Kovacs, T. (1996). Evolving Optimal Populations with XCS classifier Systems, MSc. Dissertation. University of Birmingham, UK.

    Google Scholar 

  • Kovacs, T. (1999). “Strength or Accuracy? A Comparison of Two Approaches to Fitness,” A. S. Wu (ed.), Second International Workshop on Learning Classifier Systems during GECCO99, 258–265.

    Google Scholar 

  • Lanzi, P. L. (1997). “A study of the Generalization Capabilities of XCS,” Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97), 418–425. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Lanzi, P. L. (1998). “Adding Memory to XCS,” Proceedings of the IEEE Conference on Evolutionary Computation (ICEC98), 609–614.

    Google Scholar 

  • Lanzi, P. L. and A. Perrucci (1999). “Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions,” Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ′99), 1, 345–353. Morgan Kaufmann.

    Google Scholar 

  • LeBaron, B. (1991). Technical Trading Rules and Regime Shifts in Foreign Exchange, Technical Report. Department of Economics, University of Wisconsin, Madison, WI.

    Google Scholar 

  • LeBaron, B. and A. S. Weigend (1997). “A Boostrap Evaluation of the Effect of Data Splitting on Financial Time Series,” IEEE Transactions on Neural Networks, 9, 213–220.

    Google Scholar 

  • Lewis, P. A. W., B. K. Ray, and J. G. Stevens (1994). “Modelling Time Series Using Multivariate Adaptive Regression Splines,” in A. S. Weigend and N. A. Gershenfeld (eds.), Time Series Prediction: Forecasting the Future and Understanding the Past, 296–318. Addison Wesley.

    Google Scholar 

  • Mahfoud, S. and G. Mani (1996). “Financial Forecasting Using Genetic Algorithms,” Applied Artificial Intelligence, 10(6), 543–565.

    Article  Google Scholar 

  • McCullagh, P. and J. A. Neider (1989). Generalized Linear Models. London: Chapman and Hall.

    Google Scholar 

  • Muhammad, A. and G. A. King (1997). “Foreign Exchange Market Forecasting Using Evolutionary Fuzzy Networks,” Proceedings of the IEEE /IAFE 1997 Computational Intelligence for Financial Engineering, 213–219.

    Google Scholar 

  • Nelson, D. B. (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, 59, 347–370.

    Article  Google Scholar 

  • Noever, D. and S. Baskaran (1994). “Genetic algorithms trading on the S&P500,” The Magazine of Articial Intelligence in Finance, 1(3), 41–50.

    Google Scholar 

  • Quinlan, J. R. (1986). “Induction of Decision Trees,” Machine Learning, 1, 81–106.

    Google Scholar 

  • Quinlan, J. R. (1993). Programs for Machine Learning. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Refenes, A. P. N., A. N. Burgess, and Y. Bentz (1997). “Neural Networks in Financial Engineering: A Study in Methodology”, IEEE Transactions on Neural Networks, 8(6), 1222–1267.

    Article  Google Scholar 

  • Refenes, A. P. N., A. Zapranis, and G. Francis (1997). “Stock performance modeling using neural networks: A Comparative Study with Regression Models,” Neural Networks, 7(2), 375–388. Elsevier.

    Article  Google Scholar 

  • Rumelhart, D. E. and J. L. McLelland (1986). Parallel Distributed Processing, Explorations in the Microstructure of Cognition, 1, Foundations, MIT Press.

    Google Scholar 

  • Salmon, M. (2000). “Measuring Dependency in Non-Gaussian Financial Assets,” Fifth International Meeting on Quantitative Methods in Applied Sciences.

    Google Scholar 

  • Sun, R. and T. Peterson (1999). “Multi-Agent Reinforcement Learning: Weighting and Partitioning,” Neural Networks, 12(4-5), 727–753.

    Article  Google Scholar 

  • Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tong, H. and K. S. Lim (1980). “Threshold Autoregression, Limit Cycles and Cyclical Data,” Journal of Royal Statistics Society, 42, 245–292.

    Google Scholar 

  • Tsay, R. (1989). “Testing and Modeling Threshold Autoregressive Processes,” Journal of the American Statistical Association, 84, 431–452.

    Article  Google Scholar 

  • Weigend, A. S. (1996). “Time Series Analysis and Prediction Using Gated Experts with Application to Energy Demand Forecast,” Applied Artificial Intelligence, 10, 583–624.

    Article  Google Scholar 

  • Weigend, A. S. and H. G. Zimmermann (1998). “Exploiting Local Relations as Soft Constraints to Improve Forecasting,” Journal of Computational Intelligence in Finance, 6, 14–23.

    Google Scholar 

  • Weigend, A. S., M. Mangeas, and A. N. Srivastava (1995). “Nonlinear Gated Experts for Time Series: Discovering Regimes and Avoiding Overfitting,” International Journal of Neural Systems, 6, 373–399.

    Article  Google Scholar 

  • Wilson, S. W. (1995). “Classifier Fitness Based on Accuracy,” Evolutionary Computation, 3(2), 149–175.

    Article  Google Scholar 

  • Wilson, S. W. (1998). “Generalization in the XCS classifier System,” Proceedings of the Third annual Genetic Programming Conference, 665–674. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Wilson, S. W. (1999). “Get Real! XCS with Continuous-Valued Inputs,” in L. Booker, S. Forrest, M. Mitchell, and R. Riolo (eds.), Festschrift in Honor of John H. Holand, 111–121. Center of Study of Complex Systems, The University of Michigan, ANN Arbor, MI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armano, G., Marchesi, M., Murru, A. (2002). NXCS: Hybrid Approach to Stock Indexes Forecasting. In: Chen, SH. (eds) Genetic Algorithms and Genetic Programming in Computational Finance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0835-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0835-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5262-4

  • Online ISBN: 978-1-4615-0835-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics