Skip to main content

Future Prospects of Phononic Crystals and Phononic Metamaterials

  • Chapter
Phononic Crystals

Abstract

The principles of operation of phononic crystal structures hold in a variety of frequency ranges starting from a portion of 1 Hertz to a few Tera Hertz. Therefore, phononic crystal structures can be beneficial for a variety of applications at different ranges of frequencies using various configurations and regimes of operation. In this chapter, we briefly outline the areas with great potential for applications in case further developments and research are pursued on phononic crystals and metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Lucklum, J. Li, Phononic crystals for liquid sensor. Meas. Sci. Technol. 20, 124014-1-12 (2009)

    Google Scholar 

  2. X. Zhang, Z. Liu, Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85(2), 341 (2004)

    Google Scholar 

  3. T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C.S. Lin, T.J. Huang, Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Appl. Phys. Lett. 98(17) 171911 (2011)

    Google Scholar 

  4. T. Carmon, H. Rokhsari, L. Yang, T.J. Kippenberg, K.J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 1–4 (2005)

    Article  Google Scholar 

  5. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009)

    Article  Google Scholar 

  6. P. Dainese, P.S.J. Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, A. Khelif, Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2, 388–392 (2006)

    Article  Google Scholar 

  7. M. Maldovan, E.L. Thomas, Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Appl. Phys. B 83(4), 595–600 (2006)

    Article  Google Scholar 

  8. M. Maldovan, E.L. Thomas, Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88(25), 251907 (2006)

    Google Scholar 

  9. A.V. Akimov, Y. Tanaka, A.B. Pevtsov, S.F. Kaplan, V.G. Golubev, S. Tamura, D.R. Yakovlev, M. Bayer, Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials. Phys. Rev. Lett. 101, 033902–033905 (2008)

    Article  Google Scholar 

  10. S. Mohammadi, A.A. Eftekhar, A. Adibi, Large simultaneous band gaps for photonic and phononic crystal slabs, in 2008 Conference on Lasers and Electro-Optics, Paper CFY1, OSA Publishing, 1–2, May 2008. https://www.osapublishing.org/abstract.cfm?uri=CLEO-2008-CFY1 (Also published by IEEE: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4571339&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4560187%2F4571172%2F04571339.pdf%3Farnumber%3D4571339)

  11. S. Mohammadi, A.A. Eftekhar, A. Khelif, A. Adibi, Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18(9), 9164–9172 (2010)

    Article  Google Scholar 

  12. Y. Pennec et al., Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt. Express 18(13), 14301–14310 (2010)

    Google Scholar 

  13. M. Maldovan, E.L. Thomas, Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88(25), 251907 (2006)

    Google Scholar 

  14. A.H. Safavi-Naeini, O. Painter, Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18(14), 14926–14943 (2010)

    Article  Google Scholar 

  15. A.H. Safavi-Naeini, O. Painter, Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13(1), 013017 (2011)

    Google Scholar 

  16. R. Wilson, J. Reboud, Y. Bourquin, S.L. Neale, Y. Zhang, J.M. Cooper, Phononic crystal structures for acoustically driven microfluidic manipulations. Lab Chip 11(2), 323–328 (2011)

    Article  Google Scholar 

  17. Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, J.M. Cooper, Phononic crystals for shaping fluids. Adv. Mater. (Deerfield Beach, Fla.) 23(12), 1458–1462 (2011)

    Article  Google Scholar 

  18. J. Reboud, R. Wilson, Y. Zhang, M.H. Ismail, Y. Bourquin, J.M. Cooper, Nebulisation on a disposable array structured with phononic lattices. Lab Chip 12(7), 1268–1273 (2012)

    Article  Google Scholar 

  19. S. Gonella, A.C. To, W.K. Liu, Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57(3), 621–633 (2009)

    Article  MATH  Google Scholar 

  20. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11(1), 107–112 (2011)

    Article  Google Scholar 

  21. R. Martinez-Sala, J. Sancho, J.V. Sanchez, V. Gomez, J. Llinares, F. Meseguer, Sound attenuation by sculpture. Nature 378(6554), 241 (1995)

    Google Scholar 

  22. J.H. Wen, G. Wang, D.L. Yu, H.G. Zhao, Y.Z. Liu, Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: application to a vibration isolation structure. J. Appl. Phys. 97(11), 114907 (2005)

    Google Scholar 

  23. N. Boechler, G. Theocharis, C. Daraio, Bifurcation-based acoustic switching and rectification. Nat. Mater. 10(9), 665–668 (2011)

    Article  Google Scholar 

  24. Y. Li, J. Tu, B. Liang, X.S. Guo, D. Zhang, J.C. Cheng, Unidirectional acoustic transmission based on source pattern reconstruction. J. Appl. Phys. 112(6), 064504 (2012)

    Google Scholar 

  25. J. Li, C. Chan, Double-negative acoustic metamaterial. Phys. Rev. E 70(5), 1–4 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohammadi, S., Khelif, A., Adibi, A. (2016). Future Prospects of Phononic Crystals and Phononic Metamaterials. In: Khelif, A., Adibi, A. (eds) Phononic Crystals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9393-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9393-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9392-1

  • Online ISBN: 978-1-4614-9393-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics