Skip to main content

Non-colloidal Nanocatalysts Fabricated with Nanolithography and Arc Plasma Deposition

  • Chapter
  • First Online:
Current Trends of Surface Science and Catalysis

Abstract

In this chapter, we discuss the most recent advances in the preparation of nanocatalysts via dry processes. We describe the fabrication of metal nanoparticles using lithography and the synthesis of catalytic nanoparticles using non-colloidal techniques, including plasma deposition and lithographical techniques. Synthesis of oxide-supported metal catalysts via wet-chemical processes is well known in heterogeneous catalysis [1–3]. Impregnation, coprecipitation, deposition-precipitation, ion exchange, sol–gel, and colloidal processes are typical examples of wet processes. Typically, precursors of the active catalyst materials are dissolved and reacted in an aqueous or organic solution and the solution is mixed with ceramic supports to prepare the oxide-supported metal catalysts. In general, the wet-chemically produced oxide-supported metal catalysts need to undergo annealing processes at elevated temperature in order to eliminate the organic materials required for the wet processes, such as solvent, surfactant, or capping agents [4–6]. The annealing process can cause oxidation of the catalyst metal particles, causing catalytic activity deterioration. In order to overcome the shortcomings of wet-chemical processes, direct vaporization of metallic materials to deposit active materials on ceramic supports has drawn considerable interest due to its simplicity, high reproducibility, and the possibility for large-scale production. Examples of such dry synthesis processes for nanocatalyst production are arc plasma deposition (APD) [7–9], e-beam lithography [10, 11], and laser vaporization [12, 13]. In this chapter, we introduce APD and nanolithography technologies for preparing catalyst materials and discuss recent advances in their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ertl G, Knozinger H, Weitkamp J (1999) Preparation of solid catalysts. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Regalbuto JR (2007) Handbook of catalyst preparation. Taylor & Francis, Boca Raton

    Google Scholar 

  3. Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49:126–135

    Article  CAS  Google Scholar 

  4. Park J, Aliaga C, Renzas JR, Lee H, Somorjai G (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129:1–6

    Article  CAS  Google Scholar 

  5. Kuhn JN, Tsung C-K, Huang W, Somorjai GA (2009) Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J Catal 265:209–215

    Article  CAS  Google Scholar 

  6. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155

    Article  CAS  Google Scholar 

  7. Agawa Y, Endo S, Matsuura M, Ishii Y (2010) Multi-functional materials and structures III, Pts 1 and 2, vol 123–125. Advanced materials research. Trans Tech Publications, Switzerland, pp 1067–1070

    Google Scholar 

  8. Kim SH, Jung C-H, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl Catal Gen 454:53–58

    Article  CAS  Google Scholar 

  9. Qadir K, Kim SH, Kim SM, Ha H, Park JY (2012) Support effect of arc plasma deposited Pt nanoparticles/TiO2 substrate on catalytic activity of CO oxidation. J Phys Chem C 116:24054–24059

    Article  CAS  Google Scholar 

  10. Komanicky V, Iddir H, Chang K-C, Menzel A, Karapetrov G, Hennessy D, Zapol P, You H (2009) Shape-dependent activity of platinum array catalyst. J Am Chem Soc 131:5732–5733

    Article  CAS  Google Scholar 

  11. Tsirlin T, Zhu J, Grunes J, Somorjai G (2002) AFM and TEM studies of Pt nanoparticle arrays supported on alumina model catalyst prepared by electron beam lithography. Top Catal 19:165–170

    Article  CAS  Google Scholar 

  12. Glaspell G, Hassan HMA, Elzatahry A, Abdalsayed V, Samy El-Shall M (2008) Nanocatalysis on supported oxides for CO oxidation. Top Catal 47:22–31

    Article  CAS  Google Scholar 

  13. Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticle catalysts for CO oxidation. Catal Commun 7:281–284

    Article  CAS  Google Scholar 

  14. Contreras AM, Grunes J, Yan XM, Liddle A, Somorjai GA (2005) Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics. Catal Lett 100:115–124

    Article  CAS  Google Scholar 

  15. Contreras AM, Grunes J, Yan XM, Liddle A, Somorjai GA (2006) Fabrication of 2-dimensional platinum nanocatalyst arrays by electron beam lithography: ethylene hydrogenation and CO-poisoning reaction studies. Top Catal 39:123–129

    Article  CAS  Google Scholar 

  16. Contreras AM, Yan XM, Kwon S, Bokor J, Somorjai GA (2006) Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports. Catal Lett 111:5–13

    Article  CAS  Google Scholar 

  17. Jacobs PW, Ribeiro FH, Somorjai GA, Wind SJ (1996) New model catalysts: uniform platinum cluster arrays produced by electron beam lithography. Catal Lett 37:131–136

    Article  CAS  Google Scholar 

  18. Jacobs PW, Wind SJ, Ribeiro FH, Somorjai GA (1997) Nanometer size platinum particle arrays: catalytic and surface chemical properties. Surf Sci 372:L249–L253

    Article  CAS  Google Scholar 

  19. Yan XM, Contreras AM, Koebel MM, Liddle JA, Somorjai GA (2005) Parallel fabrication of sub-50-nm uniformly sized nanoparticles by deposition through a patterned silicon nitride nanostencil. Nano Lett 5:1129–1134

    Article  CAS  Google Scholar 

  20. Yan XM, Kwon S, Contreras AM, Koebel MM, Bokor J, Somorjai GA (2005) Fabrication of dense arrays of platinum nanowires on silica, alumina, zirconia and ceria surfaces as 2-D model catalysts. Catal Lett 105:127–132

    Article  CAS  Google Scholar 

  21. Grunes J, Zhu J, Anderson EA, Somorjai GA (2002) Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: determination of active metal surface area. J Phys Chem B 106:11463–11468

    Article  CAS  Google Scholar 

  22. Grunes J, Zhu J, Yang MC, Somorjai GA (2003) CO poisoning of ethylene hydrogenation over Pt catalysts: a comparison of Pt(111) single crystal and Pt nanoparticle activities. Catal Lett 86:157–161

    Article  CAS  Google Scholar 

  23. Somorjai GA, Tao F, Park JY (2008) The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Top Catal 47:1–14

    Article  CAS  Google Scholar 

  24. Kwon S, Yan XM, Contreras AM, Liddle JA, Somorjai GA, Bokor J (2005) Fabrication of metallic nanodots in large-area arrays by mold-to-mold cross imprinting (MTMCI). Nano Lett 5:2557–2562

    Article  CAS  Google Scholar 

  25. Anders A (2008) Cathodic arcs: from fractal spots to energetic condensation. Springer, New York

    Google Scholar 

  26. Randhawa H (1988) Cathodic arc plasma deposition technology. Thin Solid Films 167:175–185

    Article  CAS  Google Scholar 

  27. Randhawa H, Johnson PC (1987) A review of cathodic arc plasma deposition processes and their applications. Surf Coat Technol 31:303–318

    Article  CAS  Google Scholar 

  28. Sanders DM, Anders A (2000) Review of cathodic arc deposition technology at the start of the new millennium. Surf Coat Technol 133:78–90

    Article  Google Scholar 

  29. Takikawa H, Tanoue H (2007) Review of cathodic arc deposition for preparing droplet-free thin films. IEEE Trans Plasma Sci 35:992–999

    Article  CAS  Google Scholar 

  30. Swift PD (1996) Macroparticles in films deposited by steered cathodic arc. J Phys D: Appl Phys 29:2025–2031

    Article  CAS  Google Scholar 

  31. Shinno H, Fukutomi M, Fujitsuka M, Okada M (1985) In situ coating of low-z materials by reactive vacuum arc-deposition with a stabilized arc cathode. J Nucl Mater 133:749–753

    Article  Google Scholar 

  32. Anders A (1999) Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review. Surf Coat Technol 120:319–330

    Article  Google Scholar 

  33. Martin PJ, Bendavid A (2001) Review of the filtered vacuum arc process and materials deposition. Thin Solid Films 394:1–15

    Article  CAS  Google Scholar 

  34. Chun S-Y, Chayahara A (2000) Pulsed vacuum arc deposition of multilayers in the nanometer range. Surf Coat Technol 132:217–221

    Article  CAS  Google Scholar 

  35. Chun SY, Chayahara A (2000) Enhanced interfacial roughness in metallic multilayers prepared by pulsed cathodic arc deposition. Surf Coat Technol 127:282–284

    Article  CAS  Google Scholar 

  36. Chun SY, Chayahara A, Posselt M (2004) Limitations on ultra-thin multilayers: pulsed cathodic arc and computer simulation. Surf Coat Technol 182:171–174

    Article  CAS  Google Scholar 

  37. Li LH, Lu QY, Fu RKY, Chu PK (2008) Thickness uniformity and surface morphology of Fe, Ti, and Hf films produced by filtered pulsed cathodic arc deposition. Surf Coat Technol 203:887–892

    Article  CAS  Google Scholar 

  38. Hinokuma S, Murakami K, Uemura K, Matsuda M, Ikeue K, Tsukahara N, Machida M (2009) Arc plasma processing of Pt and Pd catalysts supported on gamma-Al2O3 powders. Top Catal 52:2108–2111

    Article  CAS  Google Scholar 

  39. Hiramatsu M, Nagao H, Taniguchi M, Amano H, Ando Y, Hori M (2005) High-rate growth of films of dense, aligned double-walled carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Jpn J Appl Phys Part 2—Lett Express Lett 44:L693–L695

    Article  CAS  Google Scholar 

  40. Phokharatkul D, Ohno Y, Nakano H, Kishimoto S, Mizutani T (2008) High-density horizontally aligned growth of carbon nanotubes with CO nanoparticles deposited by arc-discharge plasma method. Appl Phys Lett 93:053112–053113

    Article  Google Scholar 

  41. Chen JH, Lu GH (2006) Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 17:2891–2894

    Article  CAS  Google Scholar 

  42. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012). Heterogenous catalysis by gold. In: Gates Bruce C, Jentoft Friederike C (eds) Advances in catalysis, vol 55. Academic Press, Waltham, MA, USA, pp 1–126

    Google Scholar 

  43. Haller GL, Resasco DE (1989) Metal-support interaction: group VIII metals and reducible oxides. Adv Catal 36:173–235

    Article  CAS  Google Scholar 

  44. Belton DN, Sun YM, White JM (1986) Chemisorption of CO, NO, and H2 on transition metal-titania thin film model catalysts. J Catal 102:338–347

    Article  CAS  Google Scholar 

  45. Grunwaldt J-D, Baiker A (1999) Gold/titania interfaces and their role in carbon monoxide oxidation. J Phys Chem B 103:1002–1012

    Article  CAS  Google Scholar 

  46. Hayek K, Fuchs M, Klötzer B, Reichl W, Rupprechter G (2000) Studies of metal—support interactions with “real” and “inverted” model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Top Catal 13:55–66

    Article  CAS  Google Scholar 

  47. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48:9515–9518

    Article  CAS  Google Scholar 

  48. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  49. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102–115

    Article  CAS  Google Scholar 

  50. Anpo M, Onaka M, Yamashita H (2003) Science and technology in catalysis 2002: proceedings of the fourth Tokyo conference on advanced catalytic science and technology, Kodansha, Tokyo, 14–19 July 2002

    Google Scholar 

  51. Boronat M, Corma A (2010) Origin of the different activity and selectivity toward hydrogenation of single metal Au and Pt on TiO2 and bimetallic Au-Pt/TiO2 catalysts. Langmuir 26:16607–16614

    Article  CAS  Google Scholar 

  52. Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Catalytic chemistry of supported palladium for combustion of methane. Appl Catal Gen 81:227–237

    Article  CAS  Google Scholar 

  53. Hinokuma S, Katsuhara Y, Ando E, Ikeue K, Machida M (2013) Pd-Fe/CeO2 bimetal catalysts prepared by dual arc-plasma deposition. Catal Today 201:92–97

    Article  CAS  Google Scholar 

  54. Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M (2010) Metallic Pd nanoparticles formed by Pd-O-Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190

    Article  CAS  Google Scholar 

  55. Oveisi H, Rahighi S, Jiang XF, Agawa Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2011) Improved inactivation effect of bacteria: fabrication of mesoporous anatase films with fine Ag nanoparticles prepared by coaxial vacuum arc deposition. Chem Lett 40:420–422

    Article  CAS  Google Scholar 

  56. Ito T, Kunimatsu M, Kaneko S, Hirabayashi Y, Soga M, Agawa Y, Suzuki K (2012) High performance of hydrogen peroxide detection using Pt nanoparticles-dispersed carbon electrode prepared by pulsed arc plasma deposition. Talanta 99:865–870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the future R&D Program funded by Korea Institute of Science and Technology (2E23900). This work was supported by the WCU (World Class University) program (31-2008-000-10055-0 and 2012R1A2A1A01009249) through the National Research Foundation, the Research Center Program (CA1201) of IBS (Institute for Basic Science), and from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, S.H., Park, J.Y. (2014). Non-colloidal Nanocatalysts Fabricated with Nanolithography and Arc Plasma Deposition. In: Park, J. (eds) Current Trends of Surface Science and Catalysis., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8742-5_3

Download citation

Publish with us

Policies and ethics