Skip to main content

Ab Initio Thermal Transport

  • Chapter
  • First Online:
Length-Scale Dependent Phonon Interactions

Part of the book series: Topics in Applied Physics ((TAP,volume 128))

Abstract

Ab initio (or first principles) approaches are able to predict materials properties without the use of any adjustable parameters. This chapter presents some of our recently developed techniques for the ab initio evaluation of the lattice thermal conductivity of crystalline bulk materials and alloys, and nanoscale materials including embedded nanoparticle composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793

    ADS  Google Scholar 

  2. Ziman JM (1960) Electrons and phonons. Oxford University Press London

    Google Scholar 

  3. Callaway J (1991) Quantum theory of the solid state. Academic Press, New York

    Google Scholar 

  4. Srivastava GP (1990) The physics of phonons. Adam Hilger, Bristol

    Google Scholar 

  5. Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov AP, Inyushkin AV, Taldenkov A, Ozhogin VI, Itoh KM, Haller E (1997) Phys Rev B 56:9431

    ADS  Google Scholar 

  6. Han YJ, Klemens PG (1993) Phys Rev B 48:6033

    ADS  Google Scholar 

  7. Tamura SI, Tanaka Y, Maris HJ (1999) Phys Rev B 60:2627

    ADS  Google Scholar 

  8. Khitun A, Wang KL (2001) Appl Phys Lett 79:851

    ADS  Google Scholar 

  9. Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613

    ADS  Google Scholar 

  10. Ponomareva I, Srivastava D, Menon M (2007) Nano Lett 7:1155

    ADS  Google Scholar 

  11. Lukes J, Zhong H (2007) J Heat Trans 129:705

    Google Scholar 

  12. Volz S, Chen G (1999) Appl Phys Lett 75:2056

    ADS  Google Scholar 

  13. Che J, Cagin T, Deng W, Goddard III WA (2000) J Chem Phys 113:6888

    ADS  Google Scholar 

  14. Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515

    ADS  Google Scholar 

  15. Mingo N, Yang L (2003) Phys Rev B 68:245406

    ADS  Google Scholar 

  16. Broido DA, Malorny M, Birner G, Mingo N, Stewart DA (2007) Appl Phys Lett 91:231922

    ADS  Google Scholar 

  17. Mingo N, Stewart DA, Broido DA, Srivastava D (2008) Phys Rev B 77:033418

    ADS  Google Scholar 

  18. Savic I, Mingo N, Stewart DA (2008) Phys Rev Lett 101:165502

    ADS  Google Scholar 

  19. Stewart DA, Savic I, Mingo N (2009) Nano Lett 9:81

    ADS  Google Scholar 

  20. Savic I, Stewart DA, Mingo N (2008) Phys Rev B 78:235434

    ADS  Google Scholar 

  21. Ward A, Broido DA, Stewart DA, Deinzer G (2009) Phys Rev B 80:125203

    ADS  Google Scholar 

  22. Kundu A, Mingo N, Broido DA, Stewart DA (2011) Phys Rev B 84:125426. DOI 10.1103/ PhysRevB.84.125426. URL http://link.aps.org/doi/10.1103/PhysRevB.84.125426

  23. Li W, Mingo N, Lindsay L, Broido DA, Stewart DA, Katcho NA (2012) Phys Rev B 85:195436. DOI 10.1103/PhysRevB.85.195436. URL http://link.aps.org/doi/10.1103/PhysRevB.85.195436

  24. Peierls RE (1929) Ann Phys (Liepzig) 3:1055

    ADS  MATH  Google Scholar 

  25. Peierls RE (1955) Quantum theory of solids. Clarendon, Oxford

    MATH  Google Scholar 

  26. Omini M, Sparavigna A (1995) Phys B 212:101

    ADS  Google Scholar 

  27. Omini M, Sparavigna A (1996) Phys Rev B 53:9064

    ADS  Google Scholar 

  28. Omini M, Sparavigna A (1997) Nuovo Cimento D 19:1537

    ADS  Google Scholar 

  29. Sparavigna A (2002) Phys Rev B 65:064305

    ADS  Google Scholar 

  30. Sparavigna A (2002) Phys Rev B 66:174301

    ADS  Google Scholar 

  31. Broido DA, Ward A, Mingo N (2005) Phys Rev B 72:014308

    ADS  Google Scholar 

  32. Pascual-Gutierrez JA, Murthy JY, Viskanta R (2009) J Appl Phys 106:063532

    ADS  Google Scholar 

  33. Mingo N, Esfarjani K, Broido DA, Stewart DA (2010) Phys Rev B 81:045408

    ADS  Google Scholar 

  34. Tamura S (1983) Phys Rev B 27:858

    ADS  Google Scholar 

  35. Gilat G, Raubenheimer LJ (1966) Phys Rev B 144:390

    ADS  Google Scholar 

  36. Lambin P, Vigneron JP (1984) Phys Rev B 29:3430

    ADS  Google Scholar 

  37. Yates JR, Wang X, Vanderbilt D, Souza I (2007) Phys Rev B 75:195121. DOI 10.1103/PhysRevB.75.195121. URL http://link.aps.org/doi/10.1103/PhysRevB.75.195121

  38. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    MathSciNet  ADS  Google Scholar 

  39. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    MathSciNet  ADS  Google Scholar 

  40. Martin RM (2004) Electronic structure: basic theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  41. Mattsson AE, Schultz PA, Desjarlais MP, Mattsson TR, Leung K (2005) Model Simulat Mater Sci Eng 13:R1

    ADS  Google Scholar 

  42. Hellmann H (1937) Einfuhrung in die quantenchemie. Deuticke, Leipzig

    Google Scholar 

  43. Feynman RP (1939) Phys Rev 56:340

    ADS  MATH  Google Scholar 

  44. Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Phys Rev B 43:7231

    ADS  Google Scholar 

  45. Zein EN (1984) Sov Phys Solid State 26:1825

    Google Scholar 

  46. Baroni S, Giannozzi P, Testa A (1987) Phys Rev Lett 59:2662

    ADS  Google Scholar 

  47. Mounet N, Marzari N (2005) Phys Rev B 71:205214

    ADS  Google Scholar 

  48. Giannozzi P, et al (2009) J Phys Conds Matter 21:395502

    Google Scholar 

  49. Gonze X, et al (2009) Comput Phys Commun 180:2582

    ADS  Google Scholar 

  50. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) Zeitschrift fur Kristallographie 220:567

    ADS  Google Scholar 

  51. Gonze X, Vigneron JP (1989) Phys Rev B 39:13120

    ADS  Google Scholar 

  52. Gonze X (1995) Phys Rev A 52:1096

    ADS  Google Scholar 

  53. Debernardi A, Baroni S, Molinari E (1995) Phys Rev Lett 75:1819

    ADS  Google Scholar 

  54. Lang G, Karch K, Schmitt M, Pavone P, Mayer AP, Wehner RK, Strauch D (1999) Phys Rev B 59:6182

    ADS  Google Scholar 

  55. Debernardi A (1998) Phys Rev B 57:12847

    ADS  Google Scholar 

  56. Deinzer G, Birner G, Strauch D (2003) Phys Rev B 67:144304

    ADS  Google Scholar 

  57. Coldwell-Horsfall RA (1963) Phys Rev 129:22

    ADS  MATH  Google Scholar 

  58. Soler JM, Artacho E, Gale JD, Garcia A (2002) J Phys Condens Matter 14:2745

    ADS  Google Scholar 

  59. Ozaki T (2003) Phys Rev B 67:155108

    ADS  Google Scholar 

  60. Bowler DR, Miyazaki T (2010) J Phys Condens Matter 22:074207

    ADS  Google Scholar 

  61. Skylaris CK, Haynes PD, Mostofi AA, Payne MC (2005) J Chem Phys 122:084119

    ADS  Google Scholar 

  62. Kresse G, Furthmuller J, Hafner J (1995) Europhys Lett 32:729

    ADS  Google Scholar 

  63. Frank W, Elsasser C, Fahnle M (1995) Phys Rev Lett 74:1791

    ADS  Google Scholar 

  64. Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063

    ADS  Google Scholar 

  65. Artacho E, Anglada E, Diéguez O, Gale JD, García A, Junquera J, Martin RM, Ordejón P, Pruneda JM, Sánchez-Portal D, Soler JM (2008) J Phys Condens Matter 20:064208

    ADS  Google Scholar 

  66. Alfe D (2009) Comp Phys Comm 180:2622

    ADS  Google Scholar 

  67. Togo A, Oba F, Tanaka I (2008) Phys Rev B 78:134106

    ADS  Google Scholar 

  68. Esfarjani K, Stokes HT (2008) Phys Rev B 77:144112

    ADS  Google Scholar 

  69. Tang X, Dong J (2009) Phys Earth Planet Inter 174:33

    MathSciNet  ADS  Google Scholar 

  70. Garg J, Bonini N, Kozinsky B, Marzari N (2011) Phys Rev Lett 106(4), 045901. DOI 10.1103/PhysRevLett.106.045901

    Google Scholar 

  71. Chaput L, Togo A, Tanaka I, Hug G (2011) Phys Rev B 84:094302

    ADS  Google Scholar 

  72. Lyddane RH, Sachs RG, Teller E (1941) Phys Rev 59:673

    ADS  MATH  Google Scholar 

  73. Cochran W, Cowley RA (1962) J Phys Chem Solid 23:447

    ADS  Google Scholar 

  74. Detraux F, Ghosez P, Gonze X (1998) Phys Rev Lett 81:3297

    ADS  Google Scholar 

  75. Parlinksi K, Li ZQ, Kawazoe Y (1998) Phys Rev Lett 81:3298

    ADS  Google Scholar 

  76. An J, Subedi A, Singh DJ (2008) Solid State Comm 148:417

    ADS  Google Scholar 

  77. Kilian O, Allan G, Wirtz L (2009) Phys Rev B 80:245208

    ADS  Google Scholar 

  78. Deinzer G, Schmitt M, Mayer AP, Strauch D (2004) Phys Rev B 69:014304

    ADS  Google Scholar 

  79. Leibfried G, Ludwig W (1961) Solid State Phys 12:275

    MathSciNet  Google Scholar 

  80. Maradudin AA, Horton GK (1974) Dynamical properties of solids. North-Holland, Amsterdam

    Google Scholar 

  81. Mahan GD, Jeon GS (2004) Phys Rev B 70:075405

    ADS  Google Scholar 

  82. Mounet N, Marzari N (2005) Phys Rev B 71:205214

    ADS  Google Scholar 

  83. Arfken GB (1985) Mathematical methods for physicists. Academic Press, New York

    Google Scholar 

  84. Yin MT, Cohen ML (1982) Phys Rev B 26:3259

    ADS  Google Scholar 

  85. Nilsson G, Nelin G (1972) Phys Rev B 6:3777

    ADS  Google Scholar 

  86. Warren JL, Yarnell JL, Dolling G, Cowley RA (1967) Phys Rev 158:805

    ADS  Google Scholar 

  87. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    MathSciNet  ADS  Google Scholar 

  88. von Barth U, Car R (1993) (Unpublished) for a brief description of this method, see Corso AD, Baroni S, Resta R, de Gironcoli S, Phys Rev B 47:3588

    Google Scholar 

  89. Inyushkin AV, Taldenkov AN, Gibin AM, Gusev AV, Pohl HJ (2004) Phys Stat Solid C 1:2995

    Google Scholar 

  90. Ozhogin VI, Inyushkin AV, Taldenkov AN, Tikhomirov AV, Popov GE (1996) JETP Lett 63:490

    ADS  Google Scholar 

  91. Bachelet GB, Hamann DR, Schluter M (1982) Phys Rev B 26:4199

    ADS  Google Scholar 

  92. Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF (1993) Phys Rev B 47:14850

    ADS  Google Scholar 

  93. Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Phys Rev Lett 70:3764

    ADS  Google Scholar 

  94. Berman R, Hudson PRW, Martinez M (1975) J Phys C Solid State Phys 8:L430

    ADS  Google Scholar 

  95. Onn DG, Witek A, Qiu YZ, Anthony TR, Banholzer WF (1992) Phys Rev Lett 68:2806

    ADS  Google Scholar 

  96. Ward A, Broido DA (2010) Phys Rev B 81:085205

    ADS  Google Scholar 

  97. Lindsay L, Broido DA (2008) J Phys Condens Matt 20:165209

    ADS  Google Scholar 

  98. Srivastava GP (1980) In: Maris HJ (ed) Phonon scattering in solids. Plenum Press, New York, p 149

    Google Scholar 

  99. Srivastava GP (1980) J Phys Chem Solids 41:357

    ADS  Google Scholar 

  100. Abeles B (1963) Phys Rev 131:1906. DOI 10.1103/PhysRev.131.1906

    ADS  Google Scholar 

  101. Adachi S (2007) J Appl Phys 102(6):063502. DOI 10.1063/1.2779259

    ADS  Google Scholar 

  102. Abeles B, Beers DS, Cody GD, Dismukes JP (1962) Phys Rev 125:44. DOI 10.1103/PhysRev.125.44

    ADS  Google Scholar 

  103. Snyder GJ, Toberer ES (2008) Nat Mater 7:105. DOI 10.1038/nmat2090

    ADS  Google Scholar 

  104. Lan Y, Minnich AJ, Chen G, Ren Z (2010) Adv Funct Mater 20:357

    Google Scholar 

  105. Savic I (2009) Private communication

    Google Scholar 

  106. Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Phys Rev Lett 96(4):045901. DOI 10.1103/PhysRevLett.96.045901

    ADS  Google Scholar 

  107. Kim W, Majumdar A (2006) J Appl Phys 99(8):084306. DOI 10.1063/1.2188251

    ADS  Google Scholar 

  108. Mingo N, Hauser D, Kobayashi NP, Plissonnier M, Shakouri A (2009) Nano Lett 9:711

    ADS  Google Scholar 

  109. Stackhouse S, Stixrude L, Karki BB (2010) Phys Rev Lett 104:208501

    ADS  Google Scholar 

  110. Manthilake GM, de Koker N, Frost DJ, McCammon CA (2011) Proc Natl Acad Sci USA 108:17901

    ADS  Google Scholar 

  111. Stamenković V, Breuer D, Spohn T (2011) Icarus 216:572

    ADS  Google Scholar 

  112. Green MS (1954) J Chem Phys 22:398

    MathSciNet  ADS  Google Scholar 

  113. Kubo R (1957) J Phys Soc Jpn 12:570

    MathSciNet  ADS  Google Scholar 

  114. Shiomi J, Esfarjani K, Chen G (2011) Phys Rev B 84:104302. DOI 10.1103/PhysRevB.84.104302. URL http://link.aps.org/doi/10.1103/PhysRevB.84.104302

  115. Stackhouse S, Stixrude L (2010) Rev Mineral Geochem 71:253

    Google Scholar 

  116. de Koker N (2009) Phys Rev Lett 103:125902

    ADS  Google Scholar 

  117. de Koker N (2010) Earth Planet Sci Lett 292:392

    ADS  Google Scholar 

  118. Tang X, Dong J (2010) Proc Natl Acad Sci 107:4539

    ADS  Google Scholar 

  119. Sun T, Allen PB (2010) Phys Rev B 82(22):224305. DOI 10.1103/PhysRevB.82.224305

    ADS  Google Scholar 

  120. Sun T, Shen X, Allen PB (2010) Phys Rev B 82:224304

    ADS  Google Scholar 

  121. Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phys Rev Lett 99:176802

    ADS  Google Scholar 

  122. Bonini N, Rao R, Rao AM, Marzari N, Menéndez J (2008) Phys Stat Sol (b) 245:2149

    ADS  Google Scholar 

  123. Bonini N, Garg J, Marzari N (2012) Nano Lett 12:2673

    Google Scholar 

  124. Delaire O, Ma J, Marty K, May AF, McGuire MA, Du MH, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales B (2011) Nat Mater 10:614

    ADS  Google Scholar 

  125. Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G (2012) Phys Rev B 85:155203

    ADS  Google Scholar 

  126. Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G (2012) Phys Rev B 85:184303

    ADS  Google Scholar 

Download references

Acknowledgments

We thank A. Ward, I. Savic, S. Wang, G. Deinzer, M. Malorny, K. Esfarjani, A. Kundu, and N. A. Katcho, for their contribution to the works cited or summarized in this chapter. We are grateful to A. Shakouri, L. Shi, F. Mauri, M. Lazzeri, and N. Vast for helpful discussions. We acknowledge support from the National Science Foundation under grant Nos. 1066634 and 1066406, the EU, Agence Nationale de la Recherche, CEA, and Fondation Nanosciences. L.L. acknowledges support from DARPA and from the NRC/NRL Research Associateship Program. A portion of the calculations discussed in this chapter were calculated using the Intel Cluster at the Cornell Nanoscale Facility, part of the National Nanotechnology Infrastructure Network funded by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Broido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mingo, N., Stewart, D.A., Broido, D.A., Lindsay, L., Li, W. (2014). Ab Initio Thermal Transport. In: Shindé, S., Srivastava, G. (eds) Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8651-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8651-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8650-3

  • Online ISBN: 978-1-4614-8651-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics