Skip to main content

Tissue Culture and Regeneration: A Prerequisite for Alien Gene Transfer

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Introgression of genes from alien species into crop plants could be achieved through distant hybridisation aided by tissue culture-based embryo rescue techniques. Beside this, in vitro mutagenesis, gametoclonal/somaclonal variation and transgenesis are the other tools which can generate additional variability. However, all these tissue culture-based tools require totipotent tissues. The direct regeneration of plants from an explant without a callus stage via organogenesis or somatic embryogenesis is the quickest path for micropropagation. Because of their speed and low costs of culture phase and the fidelity of the genotype in the cloned progeny, systems with direct somatic embryogenesis or organogenesis are often recommended and subjected to transformation. On the other hand, most micropropagation procedures with a callus stage can be applied as a basis for transformation, and the fresh friable calli can be directly used as the transformation target. Cell and microspore suspension cultures have also been seen as the ideal targets for genetic transformation due to the large amount of homogenous material, easy selection of the targeted cells and less chances of chimeric regeneration, while protoplasts due to exposed plasma membrane can introduce foreign DNA very easily and therefore form the ideal targets for generating unique and novel plants. This chapter discusses various plant regeneration methods and the factors affecting them towards achieving alien gene transfer in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxy acetic acid

BA:

6-Benzyladenine

BAP:

Benzylaminopurine

IAA:

Indole-3-acetic acid

PAA:

Phenyl acetic acid

IBA:

Indole-3-butyric acid

PGR:

Plant growth regulators

SE:

Somatic embryo

WPM:

Woody plant medium

CPPU:

N-(2-Chloro-4-pyridyl)-N′-phenylurea

MS:

Basal medium according to Murashige and Skoog (1962)

B5:

Basal medium according to Gamborg Miller and Ojima (1968)

NAA:

1-Naphthalene acetic acid

TDZ:

Thidiazuron

References

  • Abdollahi H, Muleo R, Rugini E (2006) Optimisation of regeneration and maintenance of morphogenic callus in pear (Pyrus communis L.) by simple and double regeneration techniques. Sci Hortic 108:352–358

    CAS  Google Scholar 

  • Aboshama HMS (2011) Direct somatic embryogenesis of pepper (Capsicum annuum L.). World JAgric Sci 7:755–762

    CAS  Google Scholar 

  • Agarwal S, Loar S, Steber CM, Zale J (2009) Floral transformation of wheat. Methods Mol Biol 478:105–114

    PubMed  Google Scholar 

  • Alam I, Sharmin SA, Mondal SC, Alam MJ, Khalekuzzaman M, Anisuzzaman M, Alam MF (2010) In vitro micropropagation through cotyledonary node culture of castor bean (Ricinus communis L.). Aust J Crop Sci 4:81–84

    CAS  Google Scholar 

  • Alimohammadi M, Bagherieh-Najjar MB (2009) Agrobacterium-mediated transformation of plants: basic principles and influencing factors. Afr J Biotechnol 8:5142–5148

    CAS  Google Scholar 

  • Altpeter F, Posseh UK (2000) Improved plant regeneration from cell suspensions of commercial cultivars, breeding and inbred lines of perennial ryegrass (Lolium perenne L.). J Plant Physiol 156:790–796

    CAS  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    PubMed  CAS  Google Scholar 

  • Anjum N, Ijaz S, Rana IA, Khan TM, Khan IA, Khan MN, Mustafa G, Joyia FA, Iqbal A (2012) Establishment of an in vitro regeneration system as a milestone for genetic transformation of sugarcane (Saccharum officinarum L) against Ustilago scitaminea. Biosci Methods 3:7–20

    Google Scholar 

  • Anwar F, Sharmila P, Saradhi PP (2010) No more recalcitrant: Chickpea regeneration and genetic transformation. Afr J Biotechnol 9:782–797

    CAS  Google Scholar 

  • Aoyagi H (2006) Development of a quantitative method for determination of the optimal conditions for protoplast isolation from cultured plant cells. Biotechnol Lett 28:1687–1694

    PubMed  CAS  Google Scholar 

  • Arencibia AD, Carmona ERC, Tellez P, Chan M-T, Yu S-M, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    CAS  Google Scholar 

  • Asaka-Kennedy Y, Tomita K, Ezura H (2004) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci 166:763–769

    Google Scholar 

  • Aubert S, Gout E, Bligny R, Mazars-Marty D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells submitted to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263

    PubMed  CAS  Google Scholar 

  • Aviles-Vinas SA, Lecona-Guzman CA, Canto-Flick A, Lopez-Erosa S, Santana-Buzzy N (2012) Morpho-histological and ultrastructural study on direct somatic embryogenesis of Capsicum Chinese Jacq. in liquid medium. Plant Biotechnol Rep. doi10.1007/s11816-012-0261-0

  • Badr-Elden AM, Nower AA, Nasr MI, Ibrahim AI (2010) Isolation and fusion of protoplasts in sugar beet (Beta vulgaris L.). Sugar Technol 12:53–58

    CAS  Google Scholar 

  • Bajaj S, Ran Y, Phillips J, Kulrajathevan G, Pal S, Cohen D, Elborough K, Sathish P (2006) A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep 25:651–659

    PubMed  CAS  Google Scholar 

  • Balance C-MC, McManus MT (2006) Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes during the development of vegetative tissues in white clover (Trifolium repens L.) is regulated by ontological cues. Plant Mol Biol 60:451–467

    Google Scholar 

  • Banerjee P, Sharmistha MS, Banerjee N (2012) High frequency somatic embryogenesis and plantlet regeneration of Bauhinia variegata, a multipurpose tree legume. Indian J Fundam Appl Life Sci 2:87–95

    Google Scholar 

  • Barinova I, Clement C, Martiny L, Baillieul F, Soukupova H, Heberle-Bors E, Touraev A (2004) Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH. Planta 219:141–146

    PubMed  CAS  Google Scholar 

  • Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrot W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27: 893–901

    PubMed  CAS  Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 180:161–167

    Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:1–12

    Google Scholar 

  • Bates GW (1999) Plant transformation via protoplast electroporation. Methods Mol Biol 111: 359–366

    PubMed  CAS  Google Scholar 

  • Bele D, Tripathi MK, Tiwari G, Baghel BS, Tiwari S (2012) Microcloning of sandalwood (Santalum album Linn.) from cultured leaf discs. J Agric Technol 8:571–583

    Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219

    CAS  Google Scholar 

  • Bhagyawant SS, Behra KK, Mishra S, Sharma A, Srivastava N (2012) Influence of light stress on somatic embryos inducing invitro antimicrobial activity in Carthamus tinctorius L. (variety-Mangira). J. J Pharm Res 5:2505–2509

    CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1992) Plant tissue culture: theory and practice. Elsevier, Amsterdam, p 776

    Google Scholar 

  • Blaydes DF (1966) Interaction of kinetin and various inhibitors in the growth of soybean tissues. Physiol Plant 19:748–753

    CAS  Google Scholar 

  • Boisson A-M, Gout E, Bligny R, Rivasseau C (2012) A simple and efficient method for the long-term preservation of plant cell suspension cultures. Plant Methods 8:4–16

    PubMed  CAS  Google Scholar 

  • Borderies G, le Béchec M, Rossignol M, Laflitte C, Deunnff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212

    PubMed  CAS  Google Scholar 

  • Borna RS, Hoque MI, Sarker RH (2010) Agrobacterium-mediated genetic transformation for local cultivars of potato (Solanum tuberosum L.) using marker genes. Plant Tiss Cult Biotechnol 20:145–155

    Google Scholar 

  • Bregitzer P, Campbell R (2001) Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci 41:173–179

    CAS  Google Scholar 

  • Burza W, Zuzga S, Yin ZM, Malepszy S (2006) Cucumber (Cucumis sativus L.). In: Wang K (ed) Agrobacterium protocols, vol 2, 2nd edn. Humana, Totowa, NJ, pp 427–438

    Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    PubMed  CAS  Google Scholar 

  • Cao J, Duan X, McElroy D, Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11:586–591

    CAS  Google Scholar 

  • Carlson AR, Letarte J, Chen J, Kasha KJ (2001) Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein. Plant Cell Rep 20:331–337

    CAS  Google Scholar 

  • Castillo AM, Vallés MP, Cistué L (2000) Improvements in barley androgenesis for plant breeding. In: Bohanec B (ed) Biotechnological approaches for utilization of gametic cells. COST 824, Bled, Slovenia, pp 15–21

    Google Scholar 

  • Chen L, Zhang S, Beachy RN, Fauquet CM (1998) A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep 18:25–31

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Google Scholar 

  • Cho JS, Hong SM, Joo SY, Yoo JS, Kim DI (2007) Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig. Appl Microbiol Biotechnol 73:1470–1476

    PubMed  CAS  Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using microprojectile bombardment. Plant J 2:275–281

    CAS  Google Scholar 

  • Cornejo MJ, Wong VL, Blechl AE (1995) Cryopreserved callus: a source of protoplasts for rice transformation. Plant Cell Rep 14:210–214

    CAS  Google Scholar 

  • Coumans MP, Sohota S, Swanson EB (1989) Plant development from isolated microspores of Zea mays L. Plant Cell Rep 7:618–621

    Google Scholar 

  • Crane C, Wright E, Dixon RA, Wang Z-Y (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354

    PubMed  CAS  Google Scholar 

  • Crossway A, Oakes JV, Irvine JM, Ward B, Knauf VC, Shewmaker CK (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet 202:179–185

    CAS  Google Scholar 

  • da Silva JAT (2005) Simple multiplication and effective genetic transformation (four methods) of in vitro-grown tobacco by stem thin cell layers. Plant Sci 169:1046–1058

    Google Scholar 

  • Dalton SJ, Bettany AE, Timms E, Morris P (1998) Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Sci 132:31–43

    CAS  Google Scholar 

  • Dan Y, Armstrong CL, Dong J, Feng X, Fry JE, Keithly GE, Martinell BJ, Roberts GA, Smith LA, Tan LJ, Duncan DR (2009) Lipoic acid: a unique plant transformation enhancer. In Vitro Cell Dev Biol Plant 45:630–638

    CAS  Google Scholar 

  • Dandekar AM, Fisk HJ (2005) Plant transformation: Agrobacterium-mediated gene transfer. Methods Mol Biol 286:35–46

    PubMed  CAS  Google Scholar 

  • Davey MR, Power JB, Lowe KC (2000) Plant protoplats. In: Spier RE (ed) Encyclopaedia of cell technology. Wiley, New York, pp 1034–1042

    Google Scholar 

  • de la Riva GA, Cabrera JG, Padrón RV, Pardo CA (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. EJB Eur J Biotechnol 3:1–16

    Google Scholar 

  • Delaitre C, Ochatt SJ, Deleury E (2001) Electroporation modulates the embryogenic responses of asparagus (Asparagus officinalis L.) microsopres. Protoplasma 216:39–46

    PubMed  CAS  Google Scholar 

  • Dey M, Bakshi S, Galiba G, Sahoo L, Panda SK (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. Biotechnology 2:233–240

    Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505

    PubMed  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    PubMed  CAS  Google Scholar 

  • Dirr MA, Heuser JCW (2009) The reference manual of woody plant propagation: from seed to tissue culture, 2nd ed. pp. 424. Timber, USA

    Google Scholar 

  • Dong S, Qu R (2005) High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168:1453–1458

    CAS  Google Scholar 

  • Dubas E, Custers J, Kieft H, Wędzony M, van Lammeren AAM (2011) Microtubule configurations and nuclear DNA synthesis during initiation of suspensor-bearing embryos from Brassica napus cv. Topas microspores. Plant Cell Rep 30:2105–1216

    PubMed  CAS  Google Scholar 

  • Dubas E, Wędzony M, Petrovska B, Salaj J, Zur I (2010) Cell structural reorganization during induction of androgenesis in isolated microspore cultures of triticale (x Triticosecale Wittm.). Acta Biol Crac Ser Bot 52:73–86

    Google Scholar 

  • Dubas E, Wędzony M, Custers J, Kieft H, van Lammeren AAM (2012) Gametophytic development of Brassica napus pollen in vitro enables examination of cytoskeleton and nuclear movements. Protoplasma 249:369–377

    PubMed  Google Scholar 

  • Dunwell JM (1996) Microspore culture. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants: fundamental aspects and methods. Kluwer Academic Publishers, Dordrecht, pp 205–216

    Google Scholar 

  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29:1251–1260

    PubMed  CAS  Google Scholar 

  • Eriksson TR (1985) Protoplast isolation and culture. In: Fowke LC, Constabel F (eds) Plant protoplasts. CRC, Boca Raton, FL, pp 1–20

    Google Scholar 

  • Faraco M, Sansebastiano PD, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156:474–478

    PubMed  CAS  Google Scholar 

  • Feeney M, Bhagwat B, Mitchell JS, Lane WD (2007) Shoot regeneration from organogenic callus of sweet cherry (Prunus avium L.). Plant Cell Tiss Cult 90:201–214

    Google Scholar 

  • Feng C, Yin Z, Ma Y, Zhang Z, Chen L, Wang B, Li B, Huang Y, Wang Q (2011) Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechnol Adv 29:84–93

    PubMed  CAS  Google Scholar 

  • Ferrie AMR, Mollers C (2010) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

    Google Scholar 

  • Ferrie AMR, Keller WA (2004) Brassica improvement through microspore culture. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry 54: Brassica. Springer, Berlin, pp 149–168

    Google Scholar 

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27:175–182

    Google Scholar 

  • Folling L, Olesen A (2001) Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep 20:629–636

    CAS  Google Scholar 

  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompso JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6:941–948

    CAS  Google Scholar 

  • Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded Type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Google Scholar 

  • Fromm ME, Morrish A, Armstrong R, Williams J, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–83

    PubMed  CAS  Google Scholar 

  • Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY (2011) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenerg Res 4:153–164

    Google Scholar 

  • Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Ma JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713

    PubMed  Google Scholar 

  • Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328

    Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    CAS  Google Scholar 

  • Galović V, Rausch T, Gršić-Rausch S (2010) Mature embryo-derived wheat transformation with major stress modulated antioxidant target gene. Arch Biol Sci Belgrade 62:539–546

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima O (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp Cell Res 50:151–158

    PubMed  CAS  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Van Eck J (2001) Agrobacterium-mediated transformation of embryogenic cell suspensions of banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    CAS  Google Scholar 

  • Ganeshan S, Baga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare). Plant Cell Tiss Org Cult 73:57–64

    CAS  Google Scholar 

  • Ge TM, Lin XH, Qin NFL, Yu SW, Yu YJ (2006) Protoplast electrofusion between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) and regeneration of mature cybrids. In Vitro Cell Dev Biol Plant 42:179–187

    CAS  Google Scholar 

  • Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tiss Org Cult 97:131–139

    Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet (Pennisetum glaucum L.) plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    PubMed  CAS  Google Scholar 

  • González AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    PubMed  CAS  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol 26:44–52

    CAS  Google Scholar 

  • Griesbach RJ (1987) Chromosome mediated transformation via microinjection. Plant Sci 50:69–77

    CAS  Google Scholar 

  • Grzebelus E, Szklarczyk M, Baranski R (2012) An improved protocol for plant regeneration from leaf and hypocotyl-derived protoplasts of carrot. Plant Cell Tiss Org Cult 109:101–109

    Google Scholar 

  • Guis M, Ben Amor M, Latché A, Pech JC, Roustan JCA (2000) Reliable system for the transformation of cantaloupe Charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci Hortic 84:91–99

    CAS  Google Scholar 

  • Guo Y-D, Hisano H, Shimamoto Y, Yamada T (2009) Transformation of androgenic-derived Festulolium plants (Lolium perenne L. x Festuca pratensis Huds.) by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 96:219–227

    CAS  Google Scholar 

  • Hanhineva KJ, Kärenlampi SO (2007) Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR. BMC Biotechnol 7:1–11

    Google Scholar 

  • Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breed 4:119–127

    CAS  Google Scholar 

  • Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798

    PubMed  CAS  Google Scholar 

  • He DG, Mouradov A, Yang YM, Mouradova E, Scott KJ (1994) Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14:192–196

    CAS  Google Scholar 

  • He Z, Qiman H, Jin SU (2010) Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agric Sci China 9:170–178

    Google Scholar 

  • Heeres P, Schippers-Rozenboom M, Jacobsen E, Visser RGF (2002) Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica 124:13–22

    CAS  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2007) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    PubMed  CAS  Google Scholar 

  • Hoa TTC, Bong BB (2003) Efficient Agrobacterium-mediated transformation of indica rice (Oryza sativa L.) using mannose selection system. Vietn J Agric Rural Dev 1+2:60–63

    Google Scholar 

  • Hoekstra S, van Bergen S, Brouwershaven IR, Schilperoot RA, Heidekamp F, van der Mark F (1996) The interaction of 2,4-D application and mannitol pretreatment in anther and microspore culture of Hordeum vulgare L. cv. Igri J Physiol 148:696–700

    CAS  Google Scholar 

  • Holm PB, Olsen O, Schnorf M, Brinch-Pederse H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 9:21–32

    PubMed  CAS  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2008) Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840

    PubMed  CAS  Google Scholar 

  • Hu L, Li Y, Xu W, Zhang G, Zhang L, Qi X, Dong H (2012) Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Plant Breed 131:385–391

    CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated largescale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    PubMed  CAS  Google Scholar 

  • Huang CN, Wang JH, Yan QS, Zhang SQ, Yan QF (1995) Plant regeneration from rice (Oryza sativa L.) embryogenic suspension cell cryopreserved by vitrification. Plant Cell Rep 14:730–734

    CAS  Google Scholar 

  • Huang X, Huang X-L, Xiao W, Zhao J-T, Dai X-M, Chen Y-F, Li X-J (2007) Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminate cv. Mas (AA) via a liquid co-cultivation system. Plant Cell Rep 26:1755–1762

    PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Arockiasamy S, Terada R (2000) Genetic transformation of rice: current status and future prospects. Curr Sci 79:186–195

    Google Scholar 

  • Ijaz S, Rana IA, Khan IA, Saleem M (2012) Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes. Genet Mol Res 11:512–530

    PubMed  CAS  Google Scholar 

  • Ilic-Grubor K, Attree SM, Fowke LC (1998) Induction of microspore-derived embryos of Brassica napus L. with polyethylene glycol (PEG) as osmoticum in a low sucrose medium. Plant Cell Rep 17:329–333

    CAS  Google Scholar 

  • Indrianto A, Heberle-Bors E, Touraev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci 143:71–79

    CAS  Google Scholar 

  • Ishigaki G, Gondo T, Suenaga K, Akashi R (2012) Fertile transgenic Brachiaria ruziziensis (ruzigrass) plants by particle bombardment of tetraploidized callus. J Plant Physiol 169:546–549

    PubMed  CAS  Google Scholar 

  • Ishikawa S, Bang SW, Kaneko Y, Matsuzawa Y (2003) Production and characterization of intergeneric somatic hybrids between Moricandia arvensis and Brassica oleracea. Plant Breed 122:233–238

    Google Scholar 

  • Ivic SD, Smigocki AC (2003) Transformation of sugar beet cell suspension cultures. In Vitro Cell Dev Biol Plant 39:573–577

    CAS  Google Scholar 

  • Jähne A, Lörz H (1995) Cereal microspore culture. Plant Sci 109:1–12

    Google Scholar 

  • Jain RK, Jain S, Wang B, Wu R (1996) Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice plants. Plant Cell Rep 15:963–968

    CAS  Google Scholar 

  • Jardinaud M-F, Souvré A, Alibert G (1993) Transient GUS gene expression in Brassica napus electroporated microspores. Plant Sci 93:177–184

    CAS  Google Scholar 

  • Jha AK, Dahleen LS, Suttle JC (2007) Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26:285–290

    PubMed  CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Google Scholar 

  • Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9:207–210

    CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    CAS  Google Scholar 

  • Jones HW, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5–11

    PubMed  Google Scholar 

  • Jones-Villeneuve E, Huang B, Prudhomme I, Bird S, Kemble R, Hattori J (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tiss Org Cult 40:97–100

    Google Scholar 

  • Kaeppler HE, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 8:415–418

    Google Scholar 

  • Kahrizi D (2009) Study of androgenesis and spontaneous chromosome doubling in barley (Hordeum vulgare L.) advanced line using isolated microspore culture. Int. J. Plant Breed 3:111–114

    Google Scholar 

  • Kahrizi D, Mohammadi R (2009) Study of androgenesis and spontaneous chromosome doubling in Barley (Hordeum vulgare L.) genotypes using isolated microspore culture. Acta Agron Hun 57:155–164

    Google Scholar 

  • Kalla R, Chu P, Spangenberg G (2001) Moleular breeding of forage legumes for virus resistance. In: Spangenberg G (ed) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 219–237

    Google Scholar 

  • Kamo K, Blowers A, Smith F, Lawson R (1995) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120:347–352

    Google Scholar 

  • Kao NN, Michayluk MR (1975) Nutritional requirement for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    CAS  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    PubMed  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation Assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 4:239–252

    Google Scholar 

  • Kim JS, Lee SY, Park SU (2008) Resveratrol production in hairy root culture of peanut. Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 7:3788–3790

    CAS  Google Scholar 

  • Kim JS, Lee SY, Eom SH, Park SU (2010) Improved shoot organogenesis and plant regeneration of Echinacea angustifolia DC. J Med Plants Res 4:587–591

    CAS  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JC (1988a) Factors influencing gene delivery into Zea maize cells by high-velocity microprojectiles. Bio/Technol 6:559–563

    CAS  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988b) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci 85:8502–8505

    PubMed  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    CAS  Google Scholar 

  • Kumar S, Bhat V (2012) High-frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol Plant 48:241–248

    Google Scholar 

  • Kurmi US, Sharma DK, Tripathi MK, Tiwari R, Baghel BS, Tiwari S (2011) Plant regeneration of Vitis vinifera (L) via direct and indirect organogenesis from cultured nodal segments. J Agric Technol 7:721–737

    Google Scholar 

  • Lazzeri PA, Jones HD (2009) Transgenic wheat, barley and oats: Production and characterization. Methods Mol Biol 478:3–20

    PubMed  Google Scholar 

  • Lee S-H, Lee D-G, Woo H-S, Lee K-W, Kim D-H, Kwak S-S, Kim J-S, Kim H-G, Ahsan N, Choi MS, Yang J-K, Lee B-H (2006) Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci 171:408–414

    PubMed  CAS  Google Scholar 

  • Li J, Ye X, An B, Du L, Xu H (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6:183–193

    Google Scholar 

  • Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22:816–821

    PubMed  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M (2001) Improved microspore culture and double haploid plant regeneration for the brown condiment mustard (Brassica juncea). Plant Cell Rep 20:126–30

    CAS  Google Scholar 

  • Liu W, Zheng M, Konzak CF (2002a) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Rep 20:821–824

    CAS  Google Scholar 

  • Liu W, Zheng M, Polle E, Konzak CF (2002b) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Loganathan M, Maruthasalam S, Shiu LY, Lien WC, Hsu WH, Lee PF, Yu CW, Lin CH (2010) Regeneration of soybean (Glycine max L. Merrill) through direct somatic embryogenesis from the immature embryonic shoot tip. In Vitro Cell Dev Biol Plant 46:265–273

    Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    CAS  Google Scholar 

  • Luthra R, Varsha V, Dubey RK, Srivastava AK, Kumar S (1997) Microprojectile mediated plant transformation: a bibliographic research. Euphytica 95:269–294

    CAS  Google Scholar 

  • Maheshwari P, Selvaraj G, Kovalchu I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnol 29(1):144–155

    CAS  Google Scholar 

  • Maju TT, Soniya EV (2012) In vitro regeneration system for multiplication and transformation in Piper nigrum L. Int J Med Arom Plants 2:178–184

    Google Scholar 

  • Matsumoto K, Vilarinhos AD, Oka S (2002) Somatic hybridization by electrofusion of banana protoplasts. Euphytica 125:317–324

    CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology 6:923–926

    Google Scholar 

  • Mejza SJ, Morgant V, DiBona DE, Wong JR (1993) Plant regeneration from isolated microspores of Triricum aestivum. Plant Cell Rep 2:149–153

    Google Scholar 

  • Mendes BMJ, Mourao FD, Filho AO, Farias PC, De M, Benedito VA (2001) Citrus somatic hybridization with potential for improved blight and CTV resistance. In Vitro Cell Dev Biol Plant 37:490–495

    CAS  Google Scholar 

  • Menges M, Murray JAH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37:635–644

    PubMed  CAS  Google Scholar 

  • Mentewab A, Letellier V, Marque C, Sarrafi A (1999) Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated microspores in wheat. Cereal Res Commun 27:17–24

    CAS  Google Scholar 

  • Ming-zhi L (1996) Promotion of carrot suspension cell transformation and plant regeneration by Agrobacterium harbouring binary vector pretreated with phenolic compounds. Acta Bot Sin 38:203–208

    Google Scholar 

  • Mitić N, Dodig D, Nikolić R, Ninković S, Vinterhalter D, Vinterhalter B (2009) Effects of donor plant environmental conditions on immature embryo cultures derived from worldwide origin wheat genotypes. Russ J Plant Physiol 56:540–545

    Google Scholar 

  • Montague A, Ziauddin A, Lee R, Ainley WM, Strommer J (2007) High-efficiency phosphinothricin-based selection for alfalfa transformation. Plant Cell Tiss Org Cult 91:29–36

    CAS  Google Scholar 

  • Moukadiri O, Lopes CR, Cornejo MJ (1999) Physiological and genomic variations in rice cells recovered from direct immersion and storage in liquid nitrogen. Physiol Plant 105:442–449

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nada S, Chennareddy S, Goldman S, Rudrabhatla S, Potlakayala SD, Josekutty P, Deepkamal K (2011) Direct shoot bud differentiation and plantlet regeneration from leaf and petiole explants of Begonia tuberhybrida. Hortic Sci 46:759–764

    CAS  Google Scholar 

  • Nakamura T, Ishikawa M (2006) Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 84:293–299

    Google Scholar 

  • Nandadeva YL, Lupi CG, Meyer CS, Devi PS, Potrykus I, Bilang R (1999) Microprojectile-mediated transient and integrative transformation of rice embryogenic suspension cells: effects of osmotic cell conditioning and of the physical configuration of plasmid DNA. Plant Cell Rep 18:500–504

    CAS  Google Scholar 

  • Nash T-D, Davies ME (1972) Some aspects of growth and metabolism of Paul’s Scarlet rose cell suspensions. J Exp Bot 23:75–91

    CAS  Google Scholar 

  • Nehlin L, Möllers C, Bergman P, Glimelius K (2000) Transient β-gus and gfp gene expression and viability analysis of microprojectile bombarded microspores of Brassica napus L. J Plant Physiol 156:175–183

    CAS  Google Scholar 

  • Neuhaus G, Spangenberg G, Scheid OM, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75:30–36

    Google Scholar 

  • Newell CA (2000) Plant transformation technology: developments and applications. Mol Biotechnol 16:53–65

    PubMed  CAS  Google Scholar 

  • Niaz F, Quraishi A (2002) Effect of growth regulators on the regeneration potential of two sugarcane cultivars SPF-213 and CPF-237. Pak J Biol Sci 10:1081–1083

    Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angles ER, Yamomoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci U S A 102:11940–11944

    PubMed  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    PubMed  CAS  Google Scholar 

  • Nugent GD, Coyne S, Ngyuen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142

    CAS  Google Scholar 

  • Ozawa K, Takaiwa F (2010) Highly efficient Agrobacterium-mediated transformation of suspension-cultured cell clusters of rice (Oryza sativa L.). Plant Sci 179:333–337

    CAS  Google Scholar 

  • Pandey RN, Singh SP, Rastogi J, Sharma ML, Singh RK (2012) Early assessment of genetic fidelity in sugarcane (Saccharum officinarum) plantlets regenerated through direct organogenesis with RAPD and SSR markers. Aust J Crop Sci 6:618–624

    CAS  Google Scholar 

  • Panis B, Helliot B, Strosse H, Remy S, Lepoivre P, Swennen R (2005) Germplasm conservation, virus eradication and safe storage of transformation competent cultures in banana: The importance of cryopreservation. Acta Hortic 692:51–59

    Google Scholar 

  • Parimalan R, Venugopalan A, Giridhar P, Ravishankar GA (2011) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tiss Org Cult 105: 317–328

    CAS  Google Scholar 

  • Park E-H, Bae H, Park WT, Kim YB, Chae SC, Park SU (2012) Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics J 5:6–9

    CAS  Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    PubMed  CAS  Google Scholar 

  • Patil AS, Paikrao HM (2012) A novel regeneration system for a wild passion fruit species (Passiflora foetida L.) Based on direct somatic embryogenesis from leaf explants. Global J Res Med Plants Indigen Med 1:485–495

    Google Scholar 

  • Patnaik D, Khurana P (2003) Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol 3:1–11

    Google Scholar 

  • Paul A, Thapa G, Basu A, Mazumdar P, Kalita MK, Sahoo L (2010) Rapid plant regeneration, analysis of genetic fidelity and essential aromatic oil content of micropropagated plants of patchouli, Pogostemon cablin (Blanco) Benth. An industrially important aromatic plant. Ind Crops Prod 32:366–374

    CAS  Google Scholar 

  • Pellegrineschi A, Brito RM, McLean S, Hoisington D (2004) Effect of 2, 4-dichlorophenoxyacetic acid and NaCl on the establishment of callus and plant regeneration in durum and bread wheat. Plant Cell Tiss Org Cult 77:245–250

    CAS  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    PubMed  CAS  Google Scholar 

  • Perl A, Saad S, Sahar N, Holland D (1995) Establishment of long-term embryogenic cultures of seed-less Vitis vinifera cultivars - a synergistic effect of auxins and the role of abscisic acid. Plant Sci 104:193–200

    CAS  Google Scholar 

  • Piqueras A, Alburquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C, Michler CH, Abbott AA, Hall TC (eds) Transgenic crop plants. Springer, Berlin, pp 31–56

    Google Scholar 

  • Piqueras A, Debergh PC (1999) Morphogenesis in micropropagation. In: Soh WY, Bhojwani SS (eds) Morphogenesis in plant tissue cultures. Kluwer Acad Publ, Dordrecht, The Netherlands, pp 443–462

    Google Scholar 

  • Popelka JC, Altpeter F (2003) Evaluation of rye (Secale cereale L.) inbred lines and their crosses for tissue culture response and stable genetic transformation of homozygous rye inbred line L22 by biolistic gene transfer. Theor Appl Genet 107:583–590

    PubMed  CAS  Google Scholar 

  • Potrykus I, Harms CT, Lörz H (1979) Callus formation from cell culture protoplasts of corn (Zea mays). Theor Appl Genet 54:209–214

    Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Genet 199:183–188

    CAS  Google Scholar 

  • Puonti-Kaerlas J, Li HQ, Sautter C, Potrykus I (1997) Production of transgenic cassava (Manihot esculaenta Crantz) via organogenesis and Agrobacterium-mediated transformation. Afr J Root Tuber Crops 2:181–186

    Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20

    CAS  Google Scholar 

  • Raemakers CJJM, Sofiari E, Taylor N, Henshaw G, Jacobsen E, Visser RGF (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol Breed 2:339–349

    CAS  Google Scholar 

  • Raghu AV, Geetha SP, Martin G, Balachandran I, Mohanan KV (2010) Micropropagation of Tribulus terestris Linn. Indian J Nat Prod Res 1:232–235

    CAS  Google Scholar 

  • Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545

    CAS  Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319

    CAS  Google Scholar 

  • Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    PubMed  CAS  Google Scholar 

  • Reinert J, Yeoman MM (1982) Plant cell and tissue culture: a laboratory manual. Springer, Berlin, pp. 83

    Google Scholar 

  • Risacher T, Craze M, Bowden S, Paul W, Barsby T (2009) Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. In: Jones HD, Shewry PR (eds) Methods in molecular biology, transgenic wheat, barley and oats, vol. 478. Humana, New Jersey, pp 115–124

    Google Scholar 

  • Ritala A, Mannonen L, Aspegren K, Salmenkallio-Marttila M, Kurtén U, Hannus R, Mendez LJ, Teeri TH, Kauppinen V (1993) Stable transformation of barley tissue culture by particle bombardment. Plant Cell Rep 12:435–440

    CAS  Google Scholar 

  • Roby C, Martin J-B, Bligny R, Douce R (1987) Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 262: 5000–5007

    PubMed  CAS  Google Scholar 

  • Rosellini R, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044

    PubMed  CAS  Google Scholar 

  • Santacruz GAA, Cruz QR, Gómez BM, González RGG, Olvera LG, Bremont JFJ, Gallegos SA, Moya EG (2009) Genetic transformation of blue grama grass with the rolA gene from Agrobacterium rhizogenes: regeneration of transgenic plants involves a “hairy embryo” stage. In Vitro Cell Dev Biol Plant 45:681–692

    Google Scholar 

  • Sartoretto LM, Cid LPB, Brasileiro ACM (2002) Biolistic transformation of Eucalyptus grandis x E. urophylla callus. Funct Plant Biol 29:917–924

    CAS  Google Scholar 

  • Sato H, Takamizo T (2006) Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci 52:95–98

    CAS  Google Scholar 

  • Sato T, Asaka D, Harada T, Matsukawa I (1993) Plant regeneration from protoplasts of adzuki bean (Vigna angularis Ohwi & Ohashi). Jpn J Breed 43:183–191

    CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Schnorf M, Neuhaus-Url G, Galli A, Lida S, Potrykus I, Neuhaus G (1991) An imrprovement method for transformatuion of plant cells by microinjection; molecular and genetic analysis. Transgenic Res 1:23–30

    PubMed  CAS  Google Scholar 

  • Schöpke C, Taylor N, Carcamo R, Konan NK, Marmey P, Henshaw GG, Beachy R, Fauquet C (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14:731–735

    PubMed  Google Scholar 

  • Schreuder MM, Raemakers CJJM, Jacobsen E, Visser RGF (2001) Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). Euphytica 120:35–42

    CAS  Google Scholar 

  • Schulze J (2007) Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg Cereal Sci Biotechnol 1:64–79

    Google Scholar 

  • Schulze J, Balko C, Zener B, Koprek T, Hänsch R, Nerlich A, Mendel RR (1995) Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112:197–206

    CAS  Google Scholar 

  • Scott RJ, Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: A useful model system for gene expression studies in plants. Plant Mol Biol 8:265–274

    CAS  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plantarum 127:519–534

    CAS  Google Scholar 

  • Sharma S, Sarkar D, Pandey SK, Chandel P, Tiwari JK (2011) Stoloniferous shoot protoplast, an efficient cell system in potato for somatic cell genetic manipulations. Sci Hortic 128:84–91

    CAS  Google Scholar 

  • Sharon M, Sharan M, Castello MC (2012) In vitro culture studies of Bixa orellana L: I - differential requirements for plant regeneration from hypocotyl, leaf, cotyledonary leaf and root explants. Eur J Exp Biol 2:142–150

    CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    PubMed  CAS  Google Scholar 

  • Siddique I, Anis M (2009) Direct plant regeneration from nodal explants of Balanites aegyptiaca L. (Del.): a valuable medicinal tree. New Forests 37:53–62

    Google Scholar 

  • Sinha A, Wetten AC, Caligari PDS (2003) Effect of biotic factors on the isolation of Lupinus albus protoplasts. Aust J Bot 51:103–109

    Google Scholar 

  • Smith RH (2012) Plant tissue culture: techniques and experiments, 3rd ed. pp. 188. Academic, USA

    Google Scholar 

  • Somers RDA, Rines H, Weining GU, Kaeppler HF, Bushnell WR (1992) Fertile transgenic oat plants. Biotechnology 10:1589–1594

    CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Wu XL, Nagel J, Iglesias VA, Potrykus I (1995a) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701

    CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Wu X, Nagel J, Potrykus I (1995b) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci 108:209–217

    CAS  Google Scholar 

  • Sparks CA, Jones HD (2009) Biolistics transformation of wheat. In: Jones HD, Shewry PR (eds) Methods in molecular biology, transgenic wheat, barley and oats, vol. 478. Humana, New Jersey, pp 71–92

    Google Scholar 

  • Stöger E, Fink C, Pfosser M, HeberleBors E (1995) Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14:273–278

    Google Scholar 

  • Stojakowska A, Malarz J, Szewczyk A, Kisiel W (2012) Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol Plant 34:291–298

    CAS  Google Scholar 

  • Street, H. E. 1973. Plant tissue culture. Botanical monographs, vol. 11. University of California Press, California. Blackwell Scientific Publications, Berkeley. pp. 507

    Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    PubMed  CAS  Google Scholar 

  • Sujatha M, Vijay S, Vasavi S, Reddy PV, Rao SC (2012) Agrobacterium mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tiss Org Cult 110:275–287

    Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170

    PubMed  CAS  Google Scholar 

  • Szechyńska-Hebda M, Skrzypek E, Dabrowska G, Kościelniak J, Filek M, Wędzony M (2007) The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant 29:327–337

    Google Scholar 

  • Szechyńska-Hebda M, Skrzypek E, Dąbrowska G, Wędzony M, van Lammeren A (2012) The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency. Acta Physiol Plant 34:547–560

    Google Scholar 

  • Taparia Y, Gallo M, Altpeter F (2012) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tiss Org Cult 111:131–141

    CAS  Google Scholar 

  • Touraev A, Heberle-Bors E (1999) Microspore embryogenesis and in vitro pollen maturation in tobacco. In: Hall R (ed) Plant cell culture protocols. Humana, New Jersey, pp 281–291

    Google Scholar 

  • Touraev A, Forster BP, Jain SM (2009) Advances in haploid production in higher plants. Springer Science + Business Media B.V, USA, pp. 348

    Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, HeberleBors E (1996a) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Google Scholar 

  • Touraev A, Pfosser M, Vicente O, HeberleBors E (1996b) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200:144–152

    CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium mediated techniques. Plant Cell Rep 23:780–789

    PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonicationassisted Agrobacterium mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    CAS  Google Scholar 

  • Turhan H (2004) Callus induction and growth in transgenic potato genotypes. Afr J Biotechnol 3:375–378

    CAS  Google Scholar 

  • Tyagi N, Dahleen LS, Bregitzer P (2010) Candidate genes within tissue culture regeneration QTL revisited with a linkage map based on transcript derived markers. Crop Sci 50:1697–1707

    CAS  Google Scholar 

  • Urushibara S, Tozawa Y, KawagishiKobayashi M, Wakasa K (2001) Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breed Sci 5(33):38

    Google Scholar 

  • Varshney A, Kant T, Sharma VK, Rao A, Kothari SL (1996) High frequency plant regeneration from immature embryo cultures of Triticum aestivum and T. durum. Cereal Res Commun 24:409–416

    Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    PubMed  CAS  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res 14:665–675

    PubMed  CAS  Google Scholar 

  • Wang B, Zhang Z, Yin Z, Feng C, Wang Q (2012) Novel and potential application of cryopreservation to plant genetic transformation. Biotechnol Adv 30:604–612

    PubMed  CAS  Google Scholar 

  • Wang K, Drayton P, Frame B, Dunwell J, Thompson J (1995) Whiskermediated plant transformation: an alternative technology. In Vitro Cell Dev Biol 31:101–104

    CAS  Google Scholar 

  • Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, van der Heiden MW, de Priester W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501

    PubMed  CAS  Google Scholar 

  • Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571

    CAS  Google Scholar 

  • Wang ZY, Ge Y (2005) Agrobacterium mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J Plant Physiol 162:103–113

    PubMed  CAS  Google Scholar 

  • Wang ZY, Bell J, Lehmann D (2004) Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Rep 22:903–909

    PubMed  CAS  Google Scholar 

  • Weber S, Friedt W, Landes N, Molinier J, Himber C, Rousselin P, Hahne G, Horn R (2003) Improved Agrobacterium mediated transformation of sunflower (Helianthus annuus L.): assessment of macerating enzymes and sonication. Plant Cell Rep 21:475–82

    PubMed  CAS  Google Scholar 

  • Wędzony M, Forster BP, Zur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gołębiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Jain M, Forster B (eds) Advances in haploid production in higher plants. Springer Science + Business Media B.V, USA, p 133

    Google Scholar 

  • Weir B, Gu X, Wang M, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciensmediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Winkelmann T, Specht J, Serek M (2006) Efficient plant regeneration from protoplasts isolated from embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Tiss Org Cult 86:337–347

    Google Scholar 

  • Wright E, Dixon RA, Wang ZY (2006) Medicago truncatula transformation using cotyledon explants. In: Wang K (ed) Agrobacterium protocols, vol. 2, vol 2. Humana, New Jersey, pp 129–135

    Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, ArtimMoore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene pmi, as the selectable marker. Plant Cell Rep 20:429–436

    CAS  Google Scholar 

  • Wu HX, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium mediated genetic transformation of durum wheat (Triticum turgidum L. var. Durum) using additional virulence genes. Trans Res 17:425–436

    CAS  Google Scholar 

  • Wu H, Doherty A, Jones HD (2009) Agrobacterium mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods Mol Biol 478:93–103

    PubMed  Google Scholar 

  • Wu H, McCormac AC, Elliott MC, Chen DF (1998) Agrobacterium mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare). Plant Cell Tiss Org Cult 54:161–171

    CAS  Google Scholar 

  • Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salttolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciensmediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    CAS  Google Scholar 

  • Wu YY, Chen QJ, Cui XH, Chen H, Chen J, Wang XC (2007) Efficient regeneration and Agrobacterium mediated stable transformation of perennial ryegrass. Russ J Plant Physiol 54:524–529

    CAS  Google Scholar 

  • Xi M, Fang L, Qiu S, Lu Y, Shi J (2012) A high efficiency regeneration system of oriental lily cultivar ‘Constanta’. Mol Plant Breed 3:115–120

    Google Scholar 

  • Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang ZY (2009) Agrobacterium mediated transformation of switchgrass and inheritance of the transgenes. Bioenerg Res 2:275–283

    Google Scholar 

  • Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through coexpression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    PubMed  CAS  Google Scholar 

  • Yang JL, Seong ES, Kim MJ, Ghimire BK, Kang WH, Yu CY, Li CH (2010) Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants. Plant Cell Tiss Org Cult 100:49–58

    Google Scholar 

  • Yang J, Bi HP, Fan WJ, Zhang M, Wang HX, Zhang P (2011) Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.). Plant Sci 181:701–711

    PubMed  CAS  Google Scholar 

  • Yao JL, Wu JH, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113:175–183

    CAS  Google Scholar 

  • Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.). Genome 40:570–581

    PubMed  CAS  Google Scholar 

  • Ye X, Wang ZY, Wu X, Potrykus I, Spangenberg G (1997) Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep 16:379–384

    CAS  Google Scholar 

  • Yoshimatsu K (2008) Tissue culture of medicinal plants: micropropagation, transformation and production of useful secondary metabolites. Studies in natural products chemistry. Bioactive Nat Prod (Part N) 34:647–752

    CAS  Google Scholar 

  • Yue SJ, Li H, Li YW, Zhu YF, Guo JK, Liu YJ, Chen Y, Jia X (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 highmolecular weight glutenin subunit by RNA interference. J Cereal Sci 47:153–161

    CAS  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    PubMed  CAS  Google Scholar 

  • Zang N, Zhai H, Gao S, Chen W, He S, Liu Q (2009) Efficient production of transgenic plants using the bar gene for herbicide resistance in sweet potato. Sci Hortic 122:649–653

    CAS  Google Scholar 

  • Zhang HC, Liu JM, Lu HY, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the overexpression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213

    PubMed  CAS  Google Scholar 

  • Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7:379–384

    CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXPI, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerence in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    PubMed  CAS  Google Scholar 

  • Zhao J, Cui J, Liu J, Liao F, Henny RJ, Chen J (2012a) Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum ‘Supreme’ and analysis of regenerants using flow cytometry. Plant Cell Tiss Organ Cult 110:239–249

    Google Scholar 

  • Zhao J, Zhang Q, Xie J, Hung C, Cui J, Henny RJ, Chen J (2012b) Plant regeneration via direct somatic embryogenesis from leaf and petiole explants of Epipremnum aureum ‘Marble Queen’ and characterization of selected variants. Acta Physiol Plant 34:1461–1469

    CAS  Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996a) High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicineinduced microspore embryogenesis without heat shock. Plant Cell Rep 15(668):671

    Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996b) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433439

    Google Scholar 

  • Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedlings. Plant Cell Rep 25:1199–1204

    PubMed  Google Scholar 

  • Zheng H, Wang L, Cheng A, Liu C (2003) Electrofusion of tobacco protoplasts in space. Chin Sci Bull 48:18196–71970

    Google Scholar 

  • Zheng MY, Weng Y, Liu W, Konzak CF (2001) The effect of ovaryconditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807

    Google Scholar 

  • Zhou WJ, Hagberg P, Tang GX (2002a) Increasing embryogenesis and doubling efficiency by immediate colchicines treatment of isolated microspores in spring Brassica napus. Euphytica 128:27–34

    CAS  Google Scholar 

  • Zhou WJ, Tang GX, Hagberg P (2002b) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37: 185–192

    CAS  Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker free transformation: increasing transformation frequency by the use of regeneration promoting genes. Curr Opin Biotechnol 13:173–180

    PubMed  CAS  Google Scholar 

  • Zur I, Dubas E, Golemiec E, SzechyńskaHebda M, Janowiak F, Wędzony M (2008) Stressinduced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Tiss Org Cult 94:319–328

    CAS  Google Scholar 

  • Zur I, Dubas E, Golemiec E, SzechyńskaHebda M, Golebiowska G, Wędzony M (2009) Stressrelated variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Rep 28:1279–1287

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Wędzony Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wędzony, M., Szechyńska-Hebda, M., Żur, I., Dubas, E., Krzewska, M. (2014). Tissue Culture and Regeneration: A Prerequisite for Alien Gene Transfer. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_3

Download citation

Publish with us

Policies and ethics