Skip to main content

ncRNA–Protein Interactions in Development and Disease from the Perspective of High-Throughput Studies

  • Chapter
  • First Online:
Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Genome-scale studies have provided strong support to the prevalent transcription of nonprotein-coding RNAs (ncRNAs) in various organisms. The immense functional potential embedded in long intergenic ncRNAs (>200 nucleotides) have especially aroused excitement in the scientific community. ncRNA–protein complexes are now known to participate in an astonishing array of processes in transcriptional and posttranscriptional gene regulations; the mechanisms reviewed here may just be a minor fraction of the vast unknowns. These ncRNA-mediated cellular activities contribute to an expansive spectrum of developmental processes such as embryogenesis and organogenesis, and the misregulation of these leads to tumor growth and diseases. The characterization of ncRNAs is progressing at a very fast pace, so much aided by innovations in genome-wide high-throughput technologies (e.g., mass spectrometry, deep sequencing, large scale RNAi screen), and the development of computational tools for data processing. We here present an up-to-date view of the expanding field of ncRNAs in epigenetic regulation, and the development of genome-wide high-throughput methodologies that facilitates our understanding of ncRNAs in a systematic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Chromodomain

CHART:

Capture hybridization analysis of RNA targets

ChIP-seq:

Chromatin immunoprecipitation followed by sequencing

ChIRP:

Chromatin isolation by RNA Purification

CLIP:

Cross-linking and immunoprecipitation

CRP:

Chromatin-remodeling proteins

CUTS:

Cryptic unstable transcripts

eRNAs:

Enhancer derived RNAs

ESCs:

Embryonic stem cell

HOTAIR:

Hox antisense intergenic RNA

lncRNAs:

Long intergenic noncoding RNAs

LSD/co-rest:

Lysine-specific demethylase corepressor for element1 silencing transcription factor

mRNA:

Messenger RNA

Nats:

Natural antisense transcripts

ncRNAs:

Noncoding RNAs

NoDS:

ncRNA with nuclear detention sequence

PAR-CLIP:

Photo-activable ribonucleoside-enhanced CLIP

PASRs:

Promoter-associated short RNAs

PRC2:

Polycome repressive complex 2

PROMPTS:

Promoter upstream transcripts

RBP:

RNA-binding proteins

RIP:

Ribonucleoprotein immunoprecipitation for RNA

RIP-seq:

RIP sequencing

RNAcompete

RNAPII:

RNA polymerase II

SELEX:

Systematic evolution of ligands by exponential enrichment

TASRs:

Terminator-associated short RNAs

TF:

Transcription factor

tiRNAs:

Transcription initiation-associated RNAs

TSSa-RNAs:

Transcription start site-associated RNAs

uaRNAs:

Upstream antisense RNAs

UNTS:

Upstream noncoding transcripts

Xuts:

Xrn1 sensitive unstable transcripts

References

  1. Dinger ME et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  PubMed  CAS  Google Scholar 

  2. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.

    Article  PubMed  CAS  Google Scholar 

  3. Birney E et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  5. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  6. Guttman M et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    Article  PubMed  CAS  Google Scholar 

  7. Guttman M et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.

    Article  PubMed  CAS  Google Scholar 

  8. Okazaki Y et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.

    Article  PubMed  Google Scholar 

  9. Carninci P et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  PubMed  CAS  Google Scholar 

  10. Willingham AT et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309(5740):1570–3.

    Article  PubMed  CAS  Google Scholar 

  11. Clark MB et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012;22(5):885–98.

    Article  PubMed  CAS  Google Scholar 

  12. Feng J et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84.

    Article  PubMed  CAS  Google Scholar 

  13. Zappulla DC, Cech TR. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol. 2006;71:217–24.

    Article  PubMed  CAS  Google Scholar 

  14. Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell. 2012;45(2):147–57.

    Article  PubMed  CAS  Google Scholar 

  15. Mercer TR et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 2008;105(2):716–21.

    Article  PubMed  CAS  Google Scholar 

  16. Nagano T et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.

    Article  PubMed  CAS  Google Scholar 

  17. Petruk S et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell. 2006;127(6):1209–21.

    Article  PubMed  CAS  Google Scholar 

  18. Schmitz KM et al. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24(20):2264–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kim TK et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–7.

    Article  PubMed  CAS  Google Scholar 

  20. Chen LL, Carmichael GG. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell. 2009;35(4):467–78.

    Article  PubMed  CAS  Google Scholar 

  21. Plath K et al. Role of histone H3 lysine 27 methylation in X inactivation. Science. 2003;300(5616):131–5.

    Article  PubMed  CAS  Google Scholar 

  22. Katayama S et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309(5740):1564–6.

    Article  PubMed  Google Scholar 

  23. Bertani S et al. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell. 2011;43(6):1040–6.

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe T et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453(7194):539–43.

    Article  PubMed  CAS  Google Scholar 

  25. Kutter C et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 2012;8(7):e1002841.

    Article  PubMed  CAS  Google Scholar 

  26. Martianov I et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445(7128):666–70.

    Article  PubMed  CAS  Google Scholar 

  27. Magistri M et al. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet. 2012;28(8):389–96.

    Article  PubMed  CAS  Google Scholar 

  28. Xu Z et al. Bidirectional promoters generate pervasive transcription in yeast. Nature. 2009;457(7232):1033–7.

    Article  PubMed  CAS  Google Scholar 

  29. Sheik Mohamed J et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 2010;16(2):324–37.

    Article  PubMed  CAS  Google Scholar 

  30. Loewer S et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.

    Article  PubMed  CAS  Google Scholar 

  31. Yao H et al. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 2010;24(22):2543–55.

    Article  PubMed  CAS  Google Scholar 

  32. Laver JD et al. Synthetic antibodies as tools to probe RNA-binding protein function. Mol Biosyst. 2012;8(6):1650–7.

    Article  PubMed  CAS  Google Scholar 

  33. Mattick JS. The functional genomics of noncoding RNA. Science. 2005;309(5740):1527–8.

    Article  PubMed  CAS  Google Scholar 

  34. Bond AM et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009;12(8):1020–7.

    Article  PubMed  CAS  Google Scholar 

  35. Poliseno L et al. Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol. 2011;131(12):2497–500.

    Article  PubMed  CAS  Google Scholar 

  36. Mak AB et al. A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics. 2010;9(5):811–23.

    Article  PubMed  CAS  Google Scholar 

  37. Wang X et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30.

    Article  PubMed  CAS  Google Scholar 

  38. Sopher BL et al. CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron. 2011;70(6):1071–84.

    Article  PubMed  CAS  Google Scholar 

  39. Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell. 2000;5(2):367–75.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta RA et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao J et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322(5902):750–6.

    Article  PubMed  CAS  Google Scholar 

  42. Tsai MC et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  PubMed  CAS  Google Scholar 

  43. Lee JT. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 2009;23(16):1831–42.

    Article  PubMed  CAS  Google Scholar 

  44. Yang Z et al. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001;414(6861):317–22.

    Article  PubMed  CAS  Google Scholar 

  45. Kaneko S et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 2010;24(23):2615–20.

    Article  PubMed  CAS  Google Scholar 

  46. Shin E et al. Gene expression profiling of human hepatoblastoma using archived formalin-fixed and paraffin-embedded tissues. Virchows Archiv. 2011;458(4):453–65.

    Article  PubMed  CAS  Google Scholar 

  47. Jeon Y, Lee JT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146(1):119–33.

    Article  PubMed  CAS  Google Scholar 

  48. Khalil AM et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

    Article  PubMed  CAS  Google Scholar 

  49. Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet. 2009;10(12):833–44.

    Article  PubMed  CAS  Google Scholar 

  50. Flynn RA et al. Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci USA. 2011;108(26):10460–5.

    Article  PubMed  CAS  Google Scholar 

  51. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 2009;457(7232):1028–32.

    Google Scholar 

  52. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007;8(6):413–23.

    Article  PubMed  CAS  Google Scholar 

  53. Kapranov P et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  PubMed  CAS  Google Scholar 

  54. Taft RJ et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet. 2009;41(5):572–8.

    Article  PubMed  CAS  Google Scholar 

  55. Preker P et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science. 2008;322(5909):1851–4.

    Article  PubMed  CAS  Google Scholar 

  56. Neil H et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature. 2009;457(7232):1038–42.

    Article  PubMed  CAS  Google Scholar 

  57. Chekanova JA et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell. 2007;131(7):1340–53.

    Article  PubMed  CAS  Google Scholar 

  58. van Dijk EL et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature. 2011;475(7354):114–7.

    Article  PubMed  CAS  Google Scholar 

  59. Wyers F et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell. 2005;121(5):725–37.

    Article  PubMed  CAS  Google Scholar 

  60. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322(5909):1845–8.

    Article  PubMed  CAS  Google Scholar 

  61. Seila AC et al. Divergent transcription from active promoters. Science. 2008;322(5909):1849–51.

    Article  PubMed  CAS  Google Scholar 

  62. Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet. 2009;5(4):e1000459.

    Article  PubMed  CAS  Google Scholar 

  63. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  PubMed  CAS  Google Scholar 

  64. Cabili MN et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

    Article  PubMed  CAS  Google Scholar 

  65. Jia H et al. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA. 2010;16(8):1478–87.

    Article  PubMed  CAS  Google Scholar 

  66. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 2007;14(2):103–5.

    Article  PubMed  CAS  Google Scholar 

  67. Modarresi F et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012;30(5):453–9.

    Article  PubMed  CAS  Google Scholar 

  68. Muse GW et al. RNA polymerase is poised for activation across the genome. Nat Genet. 2007;39(12):1507–11.

    Article  PubMed  CAS  Google Scholar 

  69. Ebisuya M et al. Ripples from neighbouring transcription. Nat Cell Biol. 2008;10(9):1106–13.

    Article  PubMed  CAS  Google Scholar 

  70. Valen E et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat Struct Mol Biol. 2011;18(9):1075–82.

    Article  PubMed  CAS  Google Scholar 

  71. Hirota K et al. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature. 2008;456(7218):130–4.

    Article  PubMed  CAS  Google Scholar 

  72. Kanhere A et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell. 2010;38(5):675–88.

    Article  PubMed  CAS  Google Scholar 

  73. Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17(5):556–65.

    Article  PubMed  CAS  Google Scholar 

  74. Orom UA et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58.

    Article  PubMed  CAS  Google Scholar 

  75. Maenner S et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 2010;8(1):e1000276.

    Article  PubMed  CAS  Google Scholar 

  76. Ginger MR et al. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci USA. 2006;103(15):5781–6.

    Article  PubMed  CAS  Google Scholar 

  77. Pollard KS et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167–72.

    Article  PubMed  CAS  Google Scholar 

  78. Chakraborty D et al. Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat Methods. 2012;9(4):360–2.

    Article  PubMed  CAS  Google Scholar 

  79. Ulitsky I et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–50.

    Article  PubMed  CAS  Google Scholar 

  80. Zhao J et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40(6):939–53.

    Article  PubMed  CAS  Google Scholar 

  81. Yap DB et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9.

    Article  PubMed  CAS  Google Scholar 

  82. Hung T et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.

    Article  PubMed  CAS  Google Scholar 

  83. Yap KL et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38(5):662–74.

    Article  PubMed  CAS  Google Scholar 

  84. Pandey RR et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46.

    Article  PubMed  CAS  Google Scholar 

  85. Wang F et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet. 2011;43(4):345–9.

    Article  PubMed  CAS  Google Scholar 

  86. Nguyen VT et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414(6861):322–5.

    Article  PubMed  CAS  Google Scholar 

  87. Jeronimo C et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007;27(2):262–74.

    Article  PubMed  CAS  Google Scholar 

  88. Kino T et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.

    Article  PubMed  CAS  Google Scholar 

  89. Shamovsky I et al. RNA-mediated response to heat shock in mammalian cells. Nature. 2006;440(7083):556–60.

    Article  PubMed  CAS  Google Scholar 

  90. Yang L et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88.

    Article  PubMed  CAS  Google Scholar 

  91. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136–49.

    Article  PubMed  CAS  Google Scholar 

  92. Tripathi V et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  PubMed  CAS  Google Scholar 

  93. Kotake Y et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62.

    Article  PubMed  CAS  Google Scholar 

  94. Guetg C et al. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell. 2012;45(6):790–800.

    Article  PubMed  CAS  Google Scholar 

  95. Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol. 2011;13(2):167–73.

    Article  PubMed  CAS  Google Scholar 

  96. Yoon JH et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.

    Article  PubMed  CAS  Google Scholar 

  97. Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011;470(7333):284–8.

    Article  PubMed  CAS  Google Scholar 

  98. Cesana M et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.

    Article  PubMed  CAS  Google Scholar 

  99. Kalyana-Sundaram S et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622–34.

    Article  PubMed  CAS  Google Scholar 

  100. Rinn JL et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.

    Article  PubMed  CAS  Google Scholar 

  101. Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell. 2010;143(3):390–403.

    Article  PubMed  CAS  Google Scholar 

  102. Wutz A, Gribnau J. X inactivation Xplained. Curr Opin Genet Dev. 2007;17(5):387–93.

    Article  PubMed  CAS  Google Scholar 

  103. Jeon Y, Sarma K, Lee JT. New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev. 2012;22(2):62–71.

    Article  PubMed  CAS  Google Scholar 

  104. Nora EP et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485(7398):381–5.

    Article  PubMed  CAS  Google Scholar 

  105. Kind J et al. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell. 2008;133(5):813–28.

    Article  PubMed  CAS  Google Scholar 

  106. Sanchez-Elsner T et al. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science. 2006;311(5764):1118–23.

    Article  PubMed  CAS  Google Scholar 

  107. Croce CM. LINCing chromatin remodeling to metastasis. Nat Biotechnol. 2010;28(9):931–2.

    Article  PubMed  CAS  Google Scholar 

  108. Ishida M et al. Intrinsic nucleic acid-binding activity of chp1 chromodomain is required for heterochromatic gene silencing. Mol Cell. 2012;47(2):228–41.

    Article  PubMed  CAS  Google Scholar 

  109. Hu W et al. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25(24):2573–8.

    Article  PubMed  CAS  Google Scholar 

  110. Prensner JR et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742–9.

    Article  PubMed  CAS  Google Scholar 

  111. Meola N et al. The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA. 2012;18(1):111–23.

    Article  PubMed  CAS  Google Scholar 

  112. Kretz M et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26(4):338–43.

    Article  PubMed  CAS  Google Scholar 

  113. Yu W et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451(7175):202–6.

    Article  PubMed  CAS  Google Scholar 

  114. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.

    Article  PubMed  CAS  Google Scholar 

  115. Huarte M et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  PubMed  CAS  Google Scholar 

  116. Cabianca DS et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell. 2012;149(4):819–31.

    Article  PubMed  CAS  Google Scholar 

  117. Scheibe M et al. Quantitative mass spectrometry and PAR-CLIP to identify RNA-protein interactions. Nucleic Acids Res. 2012;40(19):9897–902.

    Article  PubMed  CAS  Google Scholar 

  118. Rederstorff M, Huttenhofer A. cDNA library generation from ribonucleoprotein particles. Nat Protoc. 2011;6(2):166–74.

    Article  PubMed  CAS  Google Scholar 

  119. Hafner M et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141(1):129–41.

    Article  PubMed  CAS  Google Scholar 

  120. Kapranov P et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science. 2002;296(5569):916–9.

    Article  PubMed  CAS  Google Scholar 

  121. Rinn JL et al. The transcriptional activity of human chromosome 22. Genes Dev. 2003;17(4):529–40.

    Article  PubMed  CAS  Google Scholar 

  122. He Y et al. The antisense transcriptomes of human cells. Science. 2008;322(5909):1855–7.

    Article  PubMed  CAS  Google Scholar 

  123. Parkhomchuk D et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009;37(18):e123.

    Article  PubMed  CAS  Google Scholar 

  124. Cloonan N et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods. 2008;5(7):613–9.

    Article  PubMed  CAS  Google Scholar 

  125. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.

    Article  PubMed  CAS  Google Scholar 

  126. Lipson D et al. Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol. 2009;27(7):652–8.

    Article  PubMed  CAS  Google Scholar 

  127. Ozsolak F et al. Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods. 2010;7(8):619–21.

    Article  PubMed  CAS  Google Scholar 

  128. Ozsolak F et al. Digital transcriptome profiling from attomole-level RNA samples. Genome Res. 2010;20(4):519–25.

    Article  PubMed  CAS  Google Scholar 

  129. Mamanova L, Turner DJ. Low-bias, strand-specific transcriptome illumina sequencing by on-flowcell reverse transcription (FRT-seq). Nat Protoc. 2011;6(11):1736–47.

    Article  PubMed  CAS  Google Scholar 

  130. Ozsolak F et al. Direct RNA sequencing. Nature. 2009;461(7265):814–8.

    Article  PubMed  CAS  Google Scholar 

  131. Kishore S et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011;8(7):559–64.

    Article  PubMed  CAS  Google Scholar 

  132. Zhang C, Darnell RB. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol. 2011;29(7):607–14.

    Article  PubMed  CAS  Google Scholar 

  133. Jungkamp AC et al. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell. 2011;44(5):828–40.

    Article  PubMed  CAS  Google Scholar 

  134. Baltz AG et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 2012;46(5):674–90.

    Article  PubMed  CAS  Google Scholar 

  135. Castello A et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406.

    Article  PubMed  CAS  Google Scholar 

  136. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.

    Article  PubMed  CAS  Google Scholar 

  137. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.

    Article  PubMed  CAS  Google Scholar 

  138. Langmead B et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    Article  PubMed  CAS  Google Scholar 

  139. Mortazavi A et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

    Article  PubMed  CAS  Google Scholar 

  140. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

    Article  PubMed  CAS  Google Scholar 

  141. Guttman M et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010;28(5):503–10.

    Article  PubMed  CAS  Google Scholar 

  142. Trapnell C et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article  PubMed  CAS  Google Scholar 

  143. Garber M et al. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–77.

    Article  PubMed  CAS  Google Scholar 

  144. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

    Article  PubMed  CAS  Google Scholar 

  145. Mikkelsen TS et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  PubMed  CAS  Google Scholar 

  146. Zhang Y et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    Article  PubMed  CAS  Google Scholar 

  147. Valouev A et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods. 2008;5(9):829–34.

    Article  PubMed  CAS  Google Scholar 

  148. Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One. 2010;5(7):e11471.

    Article  PubMed  CAS  Google Scholar 

  149. Feng X, Grossman R, Stein L. PeakRanger: a cloud-enabled peak caller for ChIP-seq data. BMC Bioinformatics. 2011;12:139.

    Article  PubMed  Google Scholar 

  150. Song Q, Smith AD. Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics. 2011;27(6):870–1.

    Article  PubMed  CAS  Google Scholar 

  151. Xu H et al. A signal-noise model for significance analysis of ChIP-seq with negative control. Bioinformatics. 2010;26(9):1199–204.

    Article  PubMed  CAS  Google Scholar 

  152. Zang C et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics. 2009;25(15):1952–8.

    Article  PubMed  CAS  Google Scholar 

  153. Rashid NU et al. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol. 2011;12(7):R67.

    Article  PubMed  CAS  Google Scholar 

  154. Laajala TD et al. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics. 2009;10:618.

    Article  PubMed  CAS  Google Scholar 

  155. Namekawa SH, Lee JT. Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos. Nat Protoc. 2011;6(3):270–84.

    Article  PubMed  CAS  Google Scholar 

  156. Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods. 2012;58(2):81–7.

    Article  PubMed  CAS  Google Scholar 

  157. Ng K et al. A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell. 2011;22(14):2634–45.

    Article  PubMed  CAS  Google Scholar 

  158. Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333(6042):642–6.

    Article  PubMed  CAS  Google Scholar 

  159. Rinn JL, Huarte M. To repress or not to repress: this is the guardian’s question. Trends Cell Biol. 2011;21(6):344–53.

    Article  PubMed  CAS  Google Scholar 

  160. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  PubMed  CAS  Google Scholar 

  161. Simon MD et al. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA. 2011;108(51):20497–502.

    Article  PubMed  CAS  Google Scholar 

  162. Chu C et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44(4):667–78.

    Article  PubMed  CAS  Google Scholar 

  163. Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3(3):195–205.

    Article  PubMed  CAS  Google Scholar 

  164. Goodarzi H et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature. 2012;485(7397):264–8.

    Article  PubMed  CAS  Google Scholar 

  165. Underwood JG et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods. 2010;7(12):995–1001.

    Article  PubMed  CAS  Google Scholar 

  166. Kertesz M et al. Genome-wide measurement of RNA secondary structure in yeast. Nature. 2010;467(7311):103–7.

    Article  PubMed  CAS  Google Scholar 

  167. Ding F et al. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods. 2012;9(6):603–8.

    Article  PubMed  CAS  Google Scholar 

  168. Westhof E, Romby P. The RNA structurome: high-throughput probing. Nat Methods. 2010;7(12):965–7.

    Article  PubMed  CAS  Google Scholar 

  169. Anko ML, Neugebauer KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci. 2012;37(7):255–62.

    Article  PubMed  CAS  Google Scholar 

  170. Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8(6):479–90.

    Article  PubMed  CAS  Google Scholar 

  171. Bailey TL et al. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34(Web Server issue):W369–73.

    Article  PubMed  CAS  Google Scholar 

  172. Ray D et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009;27(7):667–70.

    Article  PubMed  CAS  Google Scholar 

  173. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  PubMed  CAS  Google Scholar 

  174. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Ontario Research Fund—Global Leader (Round 2) to JG and ZZ. YL is co-funded by NSERC Canada Graduate Scholarship and Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolei Zhang B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, D.Y., Li, Y., Greenblatt, J., Zhang, Z. (2014). ncRNA–Protein Interactions in Development and Disease from the Perspective of High-Throughput Studies. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_5

Download citation

Publish with us

Policies and ethics