Skip to main content

Symplasmic Transport in Phloem Loading and Unloading

  • Chapter
  • First Online:
Symplasmic Transport in Vascular Plants

Abstract

The coordinated distribution of carbohydrates between different plant organs takes place in the phloem. Understanding how carbohydrates are loaded into and unloaded from this long-distance transport system is essential for our understanding of carbon allocation in plants and the mechanism of phloem transport.

In this chapter, we present the current knowledge on how sugars move from the site of production in the leaf parenchyma towards the phloem and how they exit the phloem in sink organs and move to the sites of consumption or storage. The main focus lies on symplasmic transport through plasmodesmata, which is central to all questions of intercellular carbohydrate transport. Recent investigations in non-model plant species, especially the gymnosperms, provide a more comprehensive picture of phloem loading and unloading processes than ever before, but many questions regarding underlying mechanisms, evolution, pathway capacity, and regulation remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSC:

Bundle sheath cell

CF:

Carboxyfluorescein

CC:

Companion cell

IC:

Intermediary cell

PD:

Plasmodesmata

SE:

Sieve element

SECCC:

Companion cell/sieve element complex

References

  • Ainsworth EA, Bush DR. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 2011;155:64–9.

    PubMed  CAS  Google Scholar 

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams III WW. Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA. 2005;102:12968–73.

    PubMed  CAS  Google Scholar 

  • Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant. 2011;4:377–94.

    PubMed  CAS  Google Scholar 

  • Baluska F, Cvrckova F, Kendrick-Jones J, Volkmann D. Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol. 2001;126:39–46.

    PubMed  CAS  Google Scholar 

  • Beebe DU, Evert RF. Photoassimilate pathway(s) and phloem loading in the leaf of Moricandia Arvensis (L) Dc. (Brassicaceae). Int J Plant Sci. 1992;153:61–77.

    Google Scholar 

  • Beebe DU, Russin WA. Plasmodesmata in the phloem-loading pathway. In: van Bel AJE, van Kestern WJP, editors. Plasmodesmata: structure, function, role in cell communication. Berlin: Springer; 1999. p. 261–314.

    Google Scholar 

  • Blechschmidt-Schneider S, Eschrich W, Jahnke S. Phloem loading, translocation and unloading processes. Leiden: Backhuys; 1997.

    Google Scholar 

  • Borisjuk L, Rolletschek H, Wobus U, Weber H. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot. 2003;54:503–12.

    PubMed  CAS  Google Scholar 

  • Botha CEJ, Cross RHM. Plasmodesmatal frequency in relation to short-distance transport and phloem loading in leaves of barley (Hordeum vulgare). Phloem is not loaded directly from the symplast. Physiol Plant. 1997;99:355–62.

    CAS  Google Scholar 

  • Botha CEJ, Cross RHM, Gerber J. The microstructure of plasmodesmata in internodal stem tissue of the Saccharum hybrid var. NCo376: evidence for an apoplasmic loading pathway. S Afr J Sci. 2004;100:619–23.

    CAS  Google Scholar 

  • Bret-Harte MS, Silk WK. Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root-tip of Zea Mays L. Plant Physiol. 1994;105:19–33.

    PubMed  CAS  Google Scholar 

  • Canny MJ. Transfusion tissue of pine needles as a site of retrieval of solutes from the transpiration stream. New Phytol. 1993;123:227–32.

    Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335:207–11.

    PubMed  CAS  Google Scholar 

  • Cook H, Oparka KJ. Movement of fluorescein into isolated caryopses of wheat and barley. Plant Cell Environ. 1983;6:239–42.

    Google Scholar 

  • Davidson A, Keller F, Turgeon R. Phloem loading, plant growth form, and climate. Protoplasma. 2011;248:153–63.

    PubMed  CAS  Google Scholar 

  • Delrot S, Bonnemain JL. Involvement of protons as a substrate for the sucrose carrier during phloem loading in Vicia faba leaves. Plant Physiol. 1981;67:560–4.

    PubMed  CAS  Google Scholar 

  • den Outer RW. Histological investigation of the secondary phloem of gymnosperms. Wageningen: Landbouwhogeschool te Wageningen; 1967. pp. 125.

    Google Scholar 

  • Dick PS, Rees TA. Pathway of sugar-transport in roots of Pisum sativum. J Exp Bot. 1975;26:305–14.

    CAS  Google Scholar 

  • Ding B, Parthasarathy MV, Niklas K, Turgeon R. A morphometric analysis of the phloem-unloading pathway in developing tobacco-leaves. Planta. 1988;176:307–18.

    Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV. Substructure of freeze-substituted plasmodesmata. Protoplasma. 1992;169:28–41.

    Google Scholar 

  • Ding XS, Shintaku MH, Carter SA, Nelson RS. Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci USA. 1996;93:11155–60.

    PubMed  CAS  Google Scholar 

  • Ding XS, Carter SA, Deom CM, Nelson RS. Tobamovirus and potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol. 1998;116:125–36.

    CAS  Google Scholar 

  • Ehlers K, van Bel AJE. The physiological and developmental consequences of plasmodesmal connectivity. In: van Bel AJE, van Kesteren WJP, editors. Plasmodesmata. Structure, function, role in cell communication. Berlin: Springer; 1999. p. 243–60.

    Google Scholar 

  • Eisenbarth DA, Weig AR. Sucrose carrier RcSCR1 is involved in sucrose retrieval, but not in sucrose unloading in growing hypocotyls of Ricinus communis L. Plant Biol. 2005;7:98–103.

    PubMed  CAS  Google Scholar 

  • Eleftheriou EP. Monocotyledons. In: Behnke H-D, Sjolund RD, editors. Sieve elements. Comparative structure, induction and development. Berlin: Springer; 1990. p. 139–59.

    Google Scholar 

  • Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 2011;157:109–19.

    PubMed  CAS  Google Scholar 

  • Eom JS, Choi SB, Ward JM, Jeon JS. The mechanism of phloem loading in rice (Oryza sativa). Mol Cells. 2012;33:431–8.

    PubMed  CAS  Google Scholar 

  • Erwee MG, Goodwin PB. Symplast domains in extrastellar tissues of Egeria densa Planch. Planta. 1985;163:9–19.

    CAS  Google Scholar 

  • Evert RF, Russin WA. Structurally, phloem unloading in the maize leaf cannot be symplastic. Am J Bot. 1993;80:1310–7.

    Google Scholar 

  • Evert RF, Russin WA, Botha CEJ. Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf. Planta. 1996;198:572–9.

    CAS  Google Scholar 

  • Felker FC, Shannon JC. Movement of 14C-labeled assimilates into kernels of Zea mays L. III. An anatomical examination and micro-auto-radiographic study of assimilate transfer. Plant Physiol. 1980;65:864–70.

    PubMed  CAS  Google Scholar 

  • Fisher DG. Ultrastructure, plasmodesmatal frequency, and solute concentration in green areas of variegated Coleus blumei benth leaves. Planta. 1986;169:141–52.

    Google Scholar 

  • Fisher DG. Plasmodesmatal frequency and other structural aspects of assimilate collection and phloem loading in leaves of Sonchus oleraceus (Asteraceae), a species with minor vein transfer cells. Am J Bot. 1991;78:1549–59.

    Google Scholar 

  • Fisher DB. The estimated pore diameter for plasmodesmal channels in the Abutilon nectary trichome should be about 4 nm, rather than 3 nm. Planta. 1999;208:299–300.

    CAS  Google Scholar 

  • Fisher DB, Oparka KJ. Post-phloem transport: principles and problems. J Exp Bot. 1996;47:1141–54.

    PubMed  CAS  Google Scholar 

  • Fondy BR, Geiger DR. Sugar selectivity and other characteristics of phloem loading in Beta vulgaris L. Plant Physiol. 1977;59:953–60.

    PubMed  CAS  Google Scholar 

  • Fu QS, Cheng LL, Guo YD, Turgeon R. Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiol. 2011;157:1518–27.

    PubMed  CAS  Google Scholar 

  • Furch AC, Hafke JB, Schulz A, van Bel AJ. Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot. 2007;58:2827–38.

    PubMed  CAS  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S. Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot. 2007;99:593–607.

    PubMed  Google Scholar 

  • Gahrtz M, Stolz J, Sauer N. A phloem-specific sucrose-H+ symporter from Plantago major L. supports the model of apoplastic phloem loading. Plant J. 1994;6:697–706.

    PubMed  CAS  Google Scholar 

  • Gamalei Y. Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees. 1989;3:96–110.

    Google Scholar 

  • Getz HP, Thom M, Maretzki A. Proton and sucrose transport in isolated tonoplast vesicles from sugarcane stalk tissue. Physiol Plantarum. 1991;83:404–10.

    CAS  Google Scholar 

  • Giaquinta RT. Evidence for phloem loading from apoplast – chemical modification of membrane sulfhydryl-groups. Plant Physiol. 1976;57:872–5.

    PubMed  CAS  Google Scholar 

  • Giaquinta RT. Sucrose translocation and storage in the sugar beet. Plant Physiol. 1979;63:828–32.

    PubMed  CAS  Google Scholar 

  • Gisel A, Barella S, Hempel FD, Zambryski PC. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development. 1999;126:1879–89.

    PubMed  CAS  Google Scholar 

  • Gisel A, Hempel FD, Barella S, Zambryski P. Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci USA. 2002;99:1713–7.

    PubMed  CAS  Google Scholar 

  • Gould N, Thorpe MR, Pritchard J, Christeller JT, Williams LE, Roeb G, et al. AtSUC2 has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies. Plant Sci. 2012;188:97–101.

    PubMed  Google Scholar 

  • Gunning BE, Pate JS, Minchin FR, Marks I. Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp Soc Exp Biol. 1974;28:87–126.

    PubMed  CAS  Google Scholar 

  • Hancock RD, Roberts AG, Viola R. A role for symplastic gating in the control of the potato tuber life cycle. Plant Signal Behav. 2008;3:27–9.

    PubMed  Google Scholar 

  • Hannah MA, Zuther E, Buchel K, Heyer AG. Transport and metabolism of raffinose family oligosaccharides in transgenic potato. J Exp Bot. 2006;57:3801–11.

    PubMed  CAS  Google Scholar 

  • Haritatos E, Keller F, Turgeon R. Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L leaves: implications for phloem loading. Planta. 1996;198:614–22.

    CAS  Google Scholar 

  • Haupt S, Duncan GH, Holzberg S, Oparka KJ. Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol. 2001;125:209–18.

    PubMed  CAS  Google Scholar 

  • Hayes PM, Patrick JW, Offler CE. The cellular pathway of radial transfer of photosynthates in stems of Phaseolus vulgaris L. – effects of cellular plasmolysis and Para-chloromercuribenzene sulfonic-acid. Ann Bot. 1987;59:635–42.

    CAS  Google Scholar 

  • Hoch G, Richter A, Korner C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003;26:1067–81.

    CAS  Google Scholar 

  • Holthaus U, Schmitz K. Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta. 1991;185:479–86.

    CAS  Google Scholar 

  • Hu LP, Sun HH, Li RF, Zhang LY, Wang SH, Sui XL, et al. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage. Plant Cell Environ. 2011;34:1835–48.

    PubMed  CAS  Google Scholar 

  • Huber B. Zur mikrotopographie der saftströme im transfusionsgewebe der koniferennadel. 1. anatomischer teil. Planta. 1947;35:331–51.

    Google Scholar 

  • Imlau A, Truernit E, Sauer N. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell. 1999;11:309–22.

    PubMed  CAS  Google Scholar 

  • Itaya A, Ma FS, Qi YJ, Matsuda Y, Zhu YL, Liang GQ, et al. Plasmodesma-mediated selective protein traffic between “symplasmically isolated” cells probed by a viral movement protein. Plant Cell. 2002;14:2071–83.

    PubMed  CAS  Google Scholar 

  • Jacobsen KR, Fisher DG, Maretzki A, Moore PH. Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta. 1992;105:70–80.

    Google Scholar 

  • Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Buhler J, Minwuyelet S, et al. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J. 2009;59:634–44.

    PubMed  CAS  Google Scholar 

  • Jensen KH, Liesche J, Bohr T, Schulz A. Universality of phloem transport in seed plants. Plant Cell Environ. 2012;35:1065–76.

    PubMed  CAS  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE. Symplasmic constriction and ultrastructural features of the sieve element companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol. 1998;116:271–8.

    CAS  Google Scholar 

  • Kim JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development. 2003;130:4351–62.

    PubMed  CAS  Google Scholar 

  • Koch KE, Avigne WT. Postphloem, nonvascular transfer in citrus – kinetics, metabolism, and sugar gradients. Plant Physiol. 1990;93:1405–16.

    PubMed  CAS  Google Scholar 

  • Korolev AV, Tomos AD, Bowtell R, Farrar JF. Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J Exp Bot. 2000;51:567–77.

    PubMed  CAS  Google Scholar 

  • Kühn C, Grof CP. Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010;13:288–98.

    PubMed  Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science. 1997;275:1298–300.

    PubMed  Google Scholar 

  • Leisner SM, Turgeon R. Movement of virus and photoassimilate in the phloem – a comparative analysis. Bioessays. 1993;15:741–8.

    PubMed  CAS  Google Scholar 

  • Lemoine R, Daie J, Wyse R. Evidence for the presence of a sucrose carrier in immature Sugar beet tap roots. Plant Physiol. 1988;86:575–80.

    PubMed  CAS  Google Scholar 

  • Lemoine R, Gallet O, Gaillard C, Frommer W, Delrot S. Plasma membrane vesicles from source and sink leaves: changes in solute transport and polypeptide composition. Plant Physiol. 1992;100:1150–6.

    PubMed  CAS  Google Scholar 

  • Liesche J, Schulz A. In vivo quantification of cell coupling in plants with different phloem-loading strategies. Plant Physiol. 2012a;159:355–65.

    PubMed  CAS  Google Scholar 

  • Liesche J, Schulz A. Quantification of plant cell coupling with three-dimensional photoactivation microscopy. J Microsc. 2012b;247:2–9.

    PubMed  CAS  Google Scholar 

  • Liesche J, Krügel U, He HX, Chincinska I, Hackel A, Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J Plant Physiol. 2011a;168:1426–33.

    PubMed  CAS  Google Scholar 

  • Liesche J, Martens HJ, Schulz A. Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma. 2011b;248:181–90.

    PubMed  CAS  Google Scholar 

  • Litton CM, Raich JW, Ryan MG. Carbon allocation in forest ecosystems. Glob Change Biol. 2007;13:2089–109.

    Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C. Tansley Review No. 58. Plasmodesmata and the supracellular nature of plants. New Phytol. 1993;125:435–76.

    Google Scholar 

  • Lucas WJ, Balachandran S, Park J, Wolf S. Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J Exp Bot. 1996;47:1119–28.

    PubMed  CAS  Google Scholar 

  • Ma FS, Peterson CA. Frequencies of plasmodesmata in Allium cepa L. roots: implications for solute transport pathways. J Exp Bot. 2001;52:1051–61.

    PubMed  CAS  Google Scholar 

  • Mahn K, Hoffmann C, Märländer B. Distribution of quality components in different morphological sections of sugar beet (Beta vulgaris L.). Eur J Agron. 2002;17:29–39.

    CAS  Google Scholar 

  • McCaskill A, Turgeon R. Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides. Proc Natl Acad Sci USA. 2007;104:19619–24.

    PubMed  CAS  Google Scholar 

  • Melkus G, Rolletschek H, Fuchs J, Radchuk V, Grafahrend-Belau E, Sreenivasulu N, et al. Dynamic C-13/H-1 NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnol J. 2011;9:1022–37.

    PubMed  CAS  Google Scholar 

  • Mierzwa RJ, Evert RF. Plasmodesmatal frequency in the root of sugar beet. Annual Meeting of the Botanical Society of America, Fort Collins: Colorado State University; 1984. p. 107.

    Google Scholar 

  • Minchin PEH, Lacointe A. New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol. 2005;166:771–9.

    PubMed  CAS  Google Scholar 

  • Minchin PEH, Thorpe MR. Apoplastic phloem unloading in the stem of bean. J Exp Bot. 1984;35:538–50.

    Google Scholar 

  • Minchin PEH, Ryan KG, Thorpe MR. Further evidence of apoplastic unloading into the stem of bean – identification of the phloem buffering pool. J Exp Bot. 1984;35:1744–53.

    Google Scholar 

  • Nie PX, Wang XY, Hu LP, Zhang HY, Zhang JX, Zhang ZX, et al. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development. Plant Cell Physiol. 2010;51:1007–18.

    PubMed  CAS  Google Scholar 

  • Offler CE, Patrick JW. Pathway of photosynthate transfer in the developing seed of Vicia faba L – a structural assessment of the role of transfer cells in unloading from the seed coat. J Exp Bot. 1993;44:711–24.

    CAS  Google Scholar 

  • Oparka KJ. Phloem unloading in the potato tuber. Pathways and sites of ATPase. Protoplasma. 1986;131:201–10.

    Google Scholar 

  • Oparka KJ, Prior DAM. Direct evidence for pressure-generated closure of plasmodesmata. Plant J. 1992;2:741–50.

    Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB. Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J. 1994;6:759–66.

    Google Scholar 

  • Oparka KJ, Prior DAM, Wright KM. Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot. 1995;46:187–97.

    CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts L, Pradel KS, et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell. 1999;97:743–54.

    PubMed  CAS  Google Scholar 

  • Patrick JW. Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:191–222.

    PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE. Compartmentation of transport and transfer events in developing seeds. J Exp Bot. 2001;52:551–64.

    PubMed  CAS  Google Scholar 

  • Patrick JW, Turvey PM. The pathway of radial transfer of photosynthate in decapitated stems of Phaseolus vulgaris L. Ann Bot. 1981;47:611–21.

    CAS  Google Scholar 

  • Patrick JW, Offler CE, Wang XD. Cellular pathway of photosynthate transport in coats of developing seed of Vicia faba L and Phaseolus vulgaris L. 1. Extent of transport through the coat symplast. J Exp Bot. 1995;46:35–47.

    CAS  Google Scholar 

  • Paul MJ, Foyer CH. Sink regulation of photosynthesis. J Exp Bot. 2001;52:1383–400.

    PubMed  CAS  Google Scholar 

  • Payyavula RS, Tay KHC, Tsai CJ, Harding SA. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 2011;65:757–70.

    PubMed  CAS  Google Scholar 

  • Peiter E, Schubert S. Sugar uptake and proton release by protoplasts from the infected zone of Vicia faba L. nodules: evidence against apoplastic sugar supply of infected cells. J Exp Bot. 2003;54:1691–700.

    PubMed  CAS  Google Scholar 

  • Phillis E, Mason TG. Studies on the transport of carbohydrates in the cotton plant. III. The polar distribution of sugar in the foliage leaf. Ann Bot. 1933;47:585–6.

    CAS  Google Scholar 

  • Schulz A. Phloem. Structure related to function. In: Behnke HD, Esser K, Kadereit JW, Lüttge U, Runge M, editors. Progress in botany. Berlin: Springer; 1998. p. 429–75.

    Google Scholar 

  • Pomper KW, Breen PJ. Levels of apoplastic solutes in developing strawberry fruit. J Exp Bot. 1995;46:743–52.

    CAS  Google Scholar 

  • Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. Front Plant Sci. 2012;3:22.

    PubMed  CAS  Google Scholar 

  • Rennie EA, Turgeon R. A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA. 2009;106:14162–7.

    PubMed  CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992;11:4705–13.

    PubMed  CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994;13:1–7.

    PubMed  CAS  Google Scholar 

  • Rinne PLH, van der Schoot C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development. 1998;125:1477–85.

    PubMed  CAS  Google Scholar 

  • Roberts AG, Oparka KJ. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 2003;26:103–24.

    Google Scholar 

  • Roberts AG, Cruz SS, Roberts IM, Prior DAM, Turgeon R, Oparka KJ. Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell. 1997;9:1381–96.

    PubMed  CAS  Google Scholar 

  • Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ. Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma. 2001;218:31–44.

    PubMed  CAS  Google Scholar 

  • Roberts IM, Wang D, Thomas CL, Maule AJ. Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance. Protoplasma. 2003;222:31–43.

    PubMed  CAS  Google Scholar 

  • Roeckl B. Nachweis eines Konzentrationshubs zwischen Palisadenzellen und Siebröhren. Planta. 1949;36:530–50.

    Google Scholar 

  • Ruan YL, Patrick JW. The cellular pathway of postphloem sugar transport in developing Tomato fruit. Planta. 1995;196:434–44.

    CAS  Google Scholar 

  • Russin WA, Evert RF. Studies on the leaf of Populus deltoides (Salicaceae) – ultrastructure, plasmodesmatal frequency, and solute concentrations. Am J Bot. 1985;72:1232–47.

    Google Scholar 

  • Rutschow HL, Baskin TI, Kramer EM. Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol. 2011;155:1817–26.

    PubMed  CAS  Google Scholar 

  • Sauter JJ, Dorr I, Kollmann R. Ultrastructure of Strasburger cells (=albuminous cells) in secondary phloem of Pinus nigra var austriaca (Hoess) Badoux. Protoplasma. 1976;88:31–49.

    Google Scholar 

  • Schmalstig JG, Geiger DR. Phloem unloading in developing leaves of sugar beet. 1. Evidence for pathway through the symplast. Plant Physiol. 1985;79:237–41.

    PubMed  CAS  Google Scholar 

  • Schultz SG, Solomon AK. Determination of effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol. 1961;44:1189–99.

    PubMed  CAS  Google Scholar 

  • Schulz A. Conifers. In: Behnke HD, Sjolund RD, editors. Comparative structure, induction and development. Berlin: Springer Verlag; 1990. p. 63–88.

    Google Scholar 

  • Schulz A. Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma. 1992;166:153–64.

    Google Scholar 

  • Schulz A. Phloem transport and differential unloading in pea-seedlings after source and sink manipulations. Planta. 1994;192:239–48.

    CAS  Google Scholar 

  • Schulz A. Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root-tips under osmotic stress. Protoplasma. 1995;188:22–37.

    Google Scholar 

  • Schulz A. Physiological control of plasmodesmal gating. In: van Bel AJE, Kesteren WJP, editors. Plasmodesmata – structure, function, role in cell communication. Heidelberg: Springer; 1999. p. 173–204.

    Google Scholar 

  • Schulz A. Role of plasmodesmata in solute loading and unloading. In: Oparka K, editor. Plasmodesmata. Oxford: Blackwell; 2005. p. 135–61.

    Google Scholar 

  • Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 2011;68:129–36.

    PubMed  CAS  Google Scholar 

  • Shakya R, Sturm A. Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiol. 1998;118:1473–80.

    PubMed  CAS  Google Scholar 

  • Slewinski TL, Meeley R, Braun DM. Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot. 2009;60:881–92.

    PubMed  CAS  Google Scholar 

  • Smith AM, Stitt M. Coordination of carbon supply and plant growth. Plant Cell Environ. 2007;30:1126–49.

    PubMed  CAS  Google Scholar 

  • Sowinski P, Szczepanik J, Minchin PE. On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot. 2008;59:1137–47.

    PubMed  CAS  Google Scholar 

  • Srivastava AC, Ganesan S, Ismail IO, Ayre BG. Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol. 2008;148:200–11.

    PubMed  CAS  Google Scholar 

  • Stadler R, Brandner J, Schulz A, Gahrtz M, Sauer N. Phloem loading by the PmSuc2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell. 1995;7:1545–54.

    PubMed  CAS  Google Scholar 

  • Tarpley L, Vietor DM. Compartmentation of sucrose during radial transfer in mature sorghum culm. BMC Plant Biol. 2007;7:33.

    PubMed  Google Scholar 

  • Tegeder M, Wang XD, Frommer WB, Offler CE, Patrick JW. Sucrose transport into developing seeds of Pisum sativum L. Plant J. 1999;18:151–61.

    PubMed  CAS  Google Scholar 

  • Terry BR, Robards AW. Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta. 1987;171:145–57.

    CAS  Google Scholar 

  • Thorpe MR, Minchin FR. Mechanism of long- and short-distance transport from sources to sinks. In: Zamski E, Schaffer AA, editors. Photoassimilate distribution in plants and crops: source-sink relationships. New York: Marcel Dekker; 1996. p. 261–82.

    Google Scholar 

  • Turgeon R. The import–export transition in dicotyledonous leaves. In: Cronshaw J, Lucas WJ, Giaquinta G, editors. Phloem transport. New York: Alan Liss; 1986. p. 285–92.

    Google Scholar 

  • Turgeon R. Phloem unloading in tobacco sink leaves – insensitivity to anoxia indicates a symplastic pathway. Planta. 1987;171:73–81.

    Google Scholar 

  • Turgeon R. Phloem loading: how leaves gain their independence. Bioscience. 2006;56:15–24.

    Google Scholar 

  • Turgeon R. The role of phloem loading reconsidered. Plant Physiol. 2010;152:1817–23.

    PubMed  CAS  Google Scholar 

  • Turgeon R, Beebe DU. The evidence for symplastic phloem loading. Plant Physiol. 1991;96:349–54.

    PubMed  CAS  Google Scholar 

  • Turgeon R, Hepler PK. Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L leaves. Planta. 1989;179:24–31.

    Google Scholar 

  • Turgeon R, Medville R. The absence of phloem loading in willow leaves. Proc Natl Acad Sci USA. 1998;95:12055–60.

    PubMed  CAS  Google Scholar 

  • Turgeon R, Medville R. Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiol. 2004;136:3795–803.

    PubMed  CAS  Google Scholar 

  • Turgeon R, Medville R. Amborella trichopoda, plasmodesmata, and the evolution of phloem loading. Protoplasma. 2011;248:173–80.

    PubMed  Google Scholar 

  • Turgeon R, Beebe DU, Gowan E. The intermediary cell – minor-vein anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae. Planta. 1993;191:446–56.

    CAS  Google Scholar 

  • Turgeon R, Medville R, Nixon KC. The evolution of minor vein phloem and phloem loading. Am J Bot. 2001;88:1331–9.

    PubMed  CAS  Google Scholar 

  • van Bel AJE, van Rijen HVM. Microelectrode-recorded development of the symplasmic autonomy of the sieve element companion cell complex in the stem phloem of Lupinus luteus L. Planta. 1994;192:165–75.

    Google Scholar 

  • van Bel AJE, Ammerlaan A, van Dijk AA. A 3-step screening-procedure to identify the mode of phloem loading in intact leaves – evidence for symplasmic and apoplasmic phloem loading associated with the type of companion cell. Planta. 1994;192:31–9.

    Google Scholar 

  • van der Schoot C, Lucas WJ. Microinjection and the study of tissue patterning in plant apices. In: Maliga P, editor. Methods in plant molecular biology. New York: Cold Spring Harbor Laboratory Press; 1995. p. 173–89.

    Google Scholar 

  • van Dongen JT, Ammerlaan AMH, Wouterlood M, van Aelst AC, Borstlap AC. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Ann Bot. 2003;91:729–37.

    PubMed  Google Scholar 

  • Vignault C, Vachaud M, Cakir B, Glissant D, Dedaldechamp F, Buttner M, et al. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot. 2005;56:1409–18.

    PubMed  CAS  Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001;13:385–98.

    PubMed  CAS  Google Scholar 

  • Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos AD, Gamalei YV, et al. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol. 2006;140:383–95.

    PubMed  CAS  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU. Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L and Cucurbita pepo L. Planta. 1996;199:425–32.

    Google Scholar 

  • Walsh KB, Sky RC, Brown SM. The anatomy of the pathway of sucrose unloading within the sugarcane stalk. Funct Plant Biol. 2005;32:367–74.

    CAS  Google Scholar 

  • Wang N, Fisher DB. The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiol. 1994;104:17–27.

    PubMed  CAS  Google Scholar 

  • Wang ZP, Deloire A, Carbonneau A, Federspiel B, Lopez F. An in vivo experimental system to study sugar phloem unloading in ripening grape berries during water deficiency stress. Ann Bot. 2003;92:523–8.

    PubMed  Google Scholar 

  • Warmbrodt RD. Studies on the root of Hordeum vulgare L – ultrastructure of the seminal root with special reference to the phloem. Am J Bot. 1985a;72:414–32.

    Google Scholar 

  • Warmbrodt RD. Studies on the root of Zea mays L – structure of the adventitious roots with respect to phloem unloading. Bot Gaz. 1985b;146:169–80.

    Google Scholar 

  • Welbaum GE, Meinzer FC, Grayson RL, Thornham KT. Evidence for and consequences of a barrier to solute diffusion between the apoplast and vascular bundles in sugarcane stalk tissue. Aust J Plant Physiol. 1992;19:611–23.

    Google Scholar 

  • Werner D, Gerlitz N, Stadler R. A dual switch in phloem unloading during ovule development in Arabidopsis. Protoplasma. 2011;248:225–35.

    PubMed  Google Scholar 

  • Wood RM, Patrick JW, Offler CE. The cellular pathway of short-distance transfer of photosynthates and potassium in the elongating stem of Phaseolus vulgaris L. A physiological assessment. Ann Bot. 1998;82:337–45.

    CAS  Google Scholar 

  • Wright KM, Oparka KJ. Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsis roots. J Exp Bot. 1997;48:1807–14.

    CAS  Google Scholar 

  • Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ. Structural and functional vein maturation in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol. 2003;131:1555–65.

    PubMed  CAS  Google Scholar 

  • Wu GL, Zhang XY, Zhang LY, Pan QH, Shen YY, Zhang DP. Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp, and apoplasmic in the fleshy pericarp. Plant Cell Physiol. 2004;45:1461–70.

    PubMed  CAS  Google Scholar 

  • Wyse R. Sucrose uptake by Sugar beet tap root-tissue. Plant Physiol. 1979;64:837–41.

    PubMed  CAS  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, et al. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol. 2004;135:574–86.

    PubMed  CAS  Google Scholar 

  • Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, et al. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 2006;142:220–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Liesche Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liesche, J., Schulz, A. (2013). Symplasmic Transport in Phloem Loading and Unloading. In: Sokołowska, K., Sowiński, P. (eds) Symplasmic Transport in Vascular Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7765-5_5

Download citation

Publish with us

Policies and ethics