Skip to main content

Hyperbolic Metrics on Riemann Surfaces and Space-Like CMC-1 Surfaces in de Sitter 3-Space

  • Conference paper
  • First Online:
Recent Trends in Lorentzian Geometry

Abstract

We introduce a new notion called the extended hyperbolic metrics, as a hyperbolic metric (i.e. metric of constant curvature − 1) with certain kinds of singularities defined on a Riemann surface, and we give several fundamental properties of such metrics. Extended hyperbolic metrics are closely related to space-like surfaces of constant mean curvature one (i.e. CMC-1 surfaces) in de Sitter 3-space S 1 3. For example, the singular set of a given CMC-1 surface in S 1 3 is contained in the singular set of the associated extended hyperbolic metric. We then classify all catenoids in S 1 3 (i.e. weakly complete constant mean curvature 1 surfaces in S 1 3 of genus zero with two regular ends whose hyperbolic Gauss map is of degree one). Such surfaces are called S 1 3-catenoids. Since there is a bijection between the moduli space of S 1 3-catenoids and the moduli space of co-orientable extended hyperbolic metrics with two regular singularities, a classification of such hyperbolic metrics is also given. (Co-orientability of extended hyperbolic metrics is defined in this paper.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujimori, S.: Spacelike CMC 1 surfaces with elliptic ends in de Sitter 3-Space. Hokkaido Math. J. 35, 289–320 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Fujimori, S.: Spacelike CMC 1 surfaces of genus 1 with two ends in de Sitter 3-space. Kyushu J. Math. 61, 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fujimori, S., Rossman, W.: Higher genus mean curvature 1 catenoids in hyperbolic and de Sitter 3-spaces. Kyushu J. Math. 64, 169–180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fujimori, S., Saji, K., Umehara, M., Yamada, K.: Singularities of maximal surfaces. Math. Z. 259, 827–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujimori, S., Rossman, W., Umehara, M., Yamada, K., Yang, S.-D: Spacelike mean curvature one surfaces in de Sitter 3-space. Comm. Anal. Geom. 17, 383–427 (2009)

    Google Scholar 

  6. Fujimori, S., Rossman, W., Umehara, M., Yamada, K., Yang, S.-D: New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space. Results Math. 56, 41–82 (2009)

    Google Scholar 

  7. Fujimori, S., Kawakami, Y., Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: CMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere. Proc. Japan Acad. Ser. A. 87, 144–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallo, D., Kapovich, M., Marden, A.: The monodromy group of Schwarzian equations on closed Riemann surfaces. Ann. of Math. 151, 625–704 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gálvez, J.A., Hauswirth, L., Mira, P.: Surfaces of constant curvature in R 3 with isolated singularities. preprint, arXiv:1007.2523.

    Google Scholar 

  10. Goldman, W.M., Projective structures with Fuchsian holonomy. J. Differ. Geom. 25, 297–326 (1987)

    MATH  Google Scholar 

  11. Kokubu, M., Umehara, M.: Orientability of linear Weingarten surfaces, spacelike CMC-1 surfaces and maximal surfaces. Math. Nachr. 284, 1903–1918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: Flat fronts in hyperbolic 3-space and their caustics. J. Math. Soc. Japan 59, 265–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kraus, D., Roth, O., Sugawa, T.: Metrics with conical singularities on the sphere and sharp extensions of the theorems of Landau and Schottky. Math. Z. 267, 851–868 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, S., Yang, S.-D.: Spacelike constant mean curvature 1 trinoids in de Sitter space. Osaka J. Math. 43, 641–663 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Okuyama, Y., Yamanoi, K.: A generalization of completeness lemma in minimal surface theory. unpublished work.

    Google Scholar 

  16. Rossman, W., Umehara, M., Yamada, K.: Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature I. Hiroshima Math. J. 34, 21–56 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Troyanov, M.: Metrics of constant curvature on a sphere with two conical singularities. In: Lecture Notes in Mathematics, vol. 1410, pp. 296–306. Springer, Berlin (1991)

    Google Scholar 

  18. Umehara, M., Yamada, K.: Surfaces of constant mean curvature c in \({H}^{3}(-{c}^{2})\) with prescribed hyperbolic Gauss map. Math. Ann. 304, 203–224 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Umehara, M., Yamada, K.: Metrics of constant curvature one with three conical singularities on the 2-sphere. Illinois J. Math. 44, 72–94 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Umehara, M., Yamada, K.: Maximal surfaces with singularities in Mikowski space. Hokkaido Math. J. 35, 13–40 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Umehara, M., Yamada, K.: Applications of a completeness lemma in minimal surface theory to various classes of surfaces. Bull. London Math. Soc. 43, 191–199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Umehara, M., Yamada, K.: CORRIGENDUM: Applications of a completeness lemma in minimal surface theory to various classes of surfaces. to appear in Bull. London Math. Soc. 44, 617–618 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank Sadayoshi Kojima and Shingo Kawai for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro Yamada .

Editor information

Editors and Affiliations

1 Projective Connections

To define extended hyperbolic metrics, we recall the definition of projective connections on Riemann surfaces: Throughout this section, we fix a connected Riemann surface M.

Definition A.1 (cf. [17]).

Let \(\{{({U}_{\lambda },{z}_{\lambda })\}}_{\lambda \in \Lambda }\) be a covering of M consisting of local complex coordinates. A family of meromorphic sections \(P :=\{ {h}_{\lambda }\,{(d{z}_{\lambda }){}^{2}\}}_{\lambda \in \Lambda }\) is called a projective connection if it satisfies

$${h}_{\lambda }{(d{z}_{\lambda })}^{2} - {h}_{ \mu }{(d{z}_{\mu })}^{2} = {S}_{{ z}_{\lambda }}({z}_{\mu }){(d{z}_{\lambda })}^{2}$$
(46)
on \({U}_{\lambda } \cap {U}_{\mu }\). Here \({h}_{\lambda }\) is a meromorphic function in \({z}_{\lambda }\) for each \(\lambda \in \Lambda \), and \({S}_{{z}_{\lambda }}({z}_{\mu })\) denotes the Schwarzian derivative of \({z}_{\mu } = {z}_{\mu }({z}_{\lambda })\) with respect to the coordinate \({z}_{\lambda }\).

We now give a typical example.

Example A.2.

Let G be a meromorphic function on M and \(\{{({U}_{\lambda },{z}_{\lambda })\}}_{\lambda \in \Lambda }\) a covering of M consisting of local complex coordinates. We set

$$S(G) :={ \left \{{S}_{{z}_{\lambda }}(G){(d{z}_{\lambda })}^{2}\right \}}_{ \lambda \in \Lambda }.$$
Then S(G) gives a projective connection on M. In this sense, our definition of the Schwarzian derivative S(G) as in Eq. (15) should be considered as a projective connection.

The difference between two projective connections is a meromorphic 2-differential of M. Let \(P :=\{ {h}_{\lambda }\,{(d{z}_{\lambda }){}^{2}\}}_{\lambda \in \Lambda }\) be a projective connection on M. A point pM is called a singularity of P if it is a pole of \({h}_{\lambda }{(d{z}_{\lambda })}^{2}\) for λ satisfying \(p \in {U}_{\lambda }\). If P has no singularities, it is called a non-singular projective connection or holomorphic projective connection.

The order m of the pole of \({h}_{\lambda }\,{(d{z}_{\lambda })}^{2}\) at a singularity p is independent of the choice of the indices λ because of Eq. (46). The integer m( ≥ 1) is called the order of the singularity at p. If m ≤ 2, p is called a regular singularity of P.

The following fact is well known:

Fact A.3 ([8]).

Let \(P :=\{ {h}_{\lambda }{(d{z}_{\lambda }){}^{2}\}}_{\lambda \in \Lambda }\) be a projective connection on M, which is free of singularities. Then there exists a meromorphic function g on \(\widetilde{M}\) such that \({S}_{{z}_{\lambda }}(g) = {h}_{\lambda }\) holds on \({U}_{\lambda }\) for each index \(\lambda \in \Lambda \) , where \(\widetilde{M}\) is the universal covering of M. Moreover, there exists a group representation \(\rho : {\pi }_{1}(M) \rightarrow \text{ PSL}(2,\mathbf{C})\) such that

$$g \circ {T}^{-1} = \rho (T) \star g\qquad \left (T \in {\pi }_{ 1}(M)\right ).$$
The map g is called a developing map of P. The representationρ is called the monodromy representation of P.

A developing map g of a given projective connection is not uniquely determined. For each \(a \in \text{ SL}(2,\mathbf{C})\), \(a \star g\) is also a developing map. The developing maps of P are determined up to such an ambiguity of the action of \(\text{ SL}(2,\mathbf{C})\).

1 A Property of Subgroups in PSU(1,1)

This appendix is an analogue of the appendix of [19], where the PSU(2) case was treated. Let Γ be a subgroup of \(\text{PSU}(1,1) = \text{ SU}(1,1)/\{ \pm 1\}\). We prove a property of a set of groups conjugate to Γ in \(\text{ PSL}(2,\mathbf{C})\) defined by

$${C}_{\Gamma } :=\{ \sigma \in \text{ PSL}(2,\mathbf{C})\,;\,\sigma \Gamma {\sigma }^{-1} \subset \text{PSU}(1,1)\}.$$

If \(\sigma \in {C}_{\Gamma }\), it is obvious that \(a\sigma \in {C}_{\Gamma }\) for all a ∈ PSU(1, 1). So if we consider the left quotient space

$${I}_{\Gamma } := \text{PSU}(1,1)\setminus {C}_{\Gamma },$$
the structure of the set \({C}_{\Gamma }\) is completely determined. Define a map \(\tilde{\varphi } : {C}_{\Gamma } \rightarrow {S}_{1}^{3}\) by
$$\tilde{\varphi }(\sigma ) := {\sigma }^{{_\ast}}{e}_{ 3}\sigma,$$
where \({S}_{1}^{3}\) is the de Sitter 3-space expressed by \({S}_{1}^{3} :=\{ a{e}_{3}{a}^{{_\ast}}\,;\,a \in \text{ PSL}(2,\mathbf{C})\}\). Then it induces an injective map \(\varphi : {I}_{\Gamma } \rightarrow {S}_{1}^{3}\) such that \(\varphi \circ \pi =\tilde{ \varphi }\), where \(\pi : {C}_{\Gamma } \rightarrow {I}_{\Gamma }\) is the canonical projection. So we can identify I Γ with a subset \(\varphi ({I}_{\Gamma }) =\tilde{ \varphi }({C}_{\Gamma })\) of the de Sitter 3-space S 1 3. The following assertion holds.

Proposition B.1.

The subset \(\varphi ({I}_{\Gamma })\) is a point, a geodesic line, or all of \({S}_{1}^{3}\) .

Proof.

For each \(\gamma \in \Gamma \), we set

$${C}_{\gamma } :=\{ \sigma \in \text{ PSL}(2,\mathbf{C})\,;\,\sigma \gamma {\sigma }^{-1} \in \text{PSU}(1,1)\}.$$
Then we have
$${C}_{\Gamma } :={ \bigcap \limits_{\gamma \in \Gamma }}{C}_{\gamma }.$$
(47)
The condition \(\sigma \gamma {\sigma }^{-1} \in \text{PSU}(1,1)\) is rewritten as \({e}_{3}{\sigma }^{{_\ast}}{e}_{3} \cdot \gamma = \gamma {e}_{3} \cdot {\sigma }^{{_\ast}}{e}_{3} \cdot \sigma \), that is \({e}_{3}{\sigma }^{{_\ast}}{e}_{3}\sigma \in {Z}_{\gamma }\). So we have
$$\tilde{\varphi }({C}_{\gamma }) = {S}_{1}^{3} \cap {e}_{ 3}{Z}_{\gamma },$$
(48)
where Z γ is the center of \(\gamma \in \Gamma \) in { PSL}(2, C). In the following discussions, Γ can be considered as a subgroup of { SU}(1, 1) by ignoring the ± -ambiguity.

If \(\Gamma \subset \{\pm {e}_{0}\}\), then obviously

$$\varphi ({I}_{\Gamma }) = {S}_{1}^{3}.$$
So we may assume that \(\Gamma \not\subset \{ \pm {e}_{0}\}\). Take an element \(\gamma \in \Gamma \) such that \(\gamma \neq \pm {e}_{0}\). Then γ is conjugate to Λ e or Λ h or Λ p in { SU}(1, 1).

Firstly, we consider the case that Γ is abelian. In these three cases, Lemma B.2 implies that Γ must be a subgroup of \({Z}_{{\Lambda }_{e}}\) or \({Z}_{{\Lambda }_{h}}\) or \({Z}_{{\Lambda }_{p}}\). Then \(\varphi ({I}_{\Gamma })\) consists of a geodesic.

Next we suppose that Γ is not abelian. Then there exists an element \(\gamma ^\prime \in \Gamma \) such that \(\gamma \gamma ^\prime\neq \gamma ^\prime\gamma \). We take \(a \in {Z}_{\gamma } \cap {Z}_{\gamma ^\prime}\) arbitrarily and suppose that \(a\neq \pm {e}_{0}\). Since \(a \in {Z}_{\gamma }\), a belongs to \({Z}_{{\Lambda }_{e}}\) or \({Z}_{{\Lambda }_{h}}\) or \({Z}_{{\Lambda }_{p}}\). Then Lemma B.2 yields that \({Z}_{a} = {Z}_{\gamma }\). Moreover, since \(a\gamma ^\prime = \gamma ^\prime a\), we have \(\gamma ^\prime \in {Z}_{a}\). Since \({Z}_{a} = {Z}_{\gamma }\), we have \(\gamma \gamma ^\prime = \gamma ^\prime\gamma \), a contradiction. Thus \(a = \pm {e}_{0}\) and \(\varphi ({I}_{\Gamma })\) consists of a point.

In the proof of Proposition B.1, we applied the following assertion, which can be proved easily.

Lemma B.2.

We set

$$E := \left (\begin{array}{c@{\quad }c} \alpha \quad & 0\\ 0\quad &{\alpha }^{-1} \end{array} \right )\qquad (\alpha \in \mathbf{C}\setminus \{1,0\}),$$
$$H := \left (\begin{array}{c@{\quad }c} \alpha \quad &\beta \\ \beta \quad &\alpha \end{array} \right )\qquad ({\alpha }^{2}-{\beta }^{2} = 1,\,\,\alpha,\beta \in \mathbf{C}),$$
$$P := \left (\begin{array}{c@{\quad }c} 1 + \mathrm{i}\beta \quad & \beta \\ \beta \quad &1 -\mathrm{i}\beta \end{array} \right )\qquad (\beta \in \mathbf{C}\setminus \{0\}).$$
Then the centers of them in \(\text{ SL}(2,\mathbf{C})\) are given as follows:
$$\begin{array}{rcl} {Z}_{E}& =& \left \{\left (\begin{array}{c@{\quad }c} {e}^{z}\quad & 0 \\ 0 \quad &{e}^{-z} \end{array} \right )\,;\,z \in \mathbf{C}\right \}, \\ {Z}_{H}& =& \left \{\pm \left (\begin{array}{c@{\quad }c} \cosh z\quad &\sinh z\\ \sinh z\quad &\cosh z\end{array} \right )\,;\,z \in \mathbf{C}\right \}, \\ {Z}_{P}& =& \left \{\left (\begin{array}{c@{\quad }c} 1 + \mathrm{i}z\quad & z\\ z \quad &1 -\mathrm{i}z \end{array} \right )\,;\,z \in \mathbf{C}\right \}.\end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Fujimori, S., Kawakami, Y., Kokubu, M., Rossman, W., Umehara, M., Yamada, K. (2012). Hyperbolic Metrics on Riemann Surfaces and Space-Like CMC-1 Surfaces in de Sitter 3-Space. In: Sánchez, M., Ortega, M., Romero, A. (eds) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4897-6_1

Download citation

Publish with us

Policies and ethics