Skip to main content

Mitochondria Na+-Ca2+ Exchange in Cardiomyocytes and Lymphocytes

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Mitochondria Na+-Ca2+ exchange (NCXmit) was first discovered by Carafoli et al. in 1974. Thereafter, the mechanisms and roles of NCXmit have been extensively studied. We review NCXmit in cardiomyocytes and lymphocytes by presenting our recent studies on it. Studies of NCXmit in rat ventricular cells demonstrated that NCXmit is voltage dependent and electrogenic. A targeted knockdown and knockout of NCLX in HL-1 cardiomyocytes and B lymphocytes, respectively, significantly reduced the NCXmit activity, indicating that NCLX is a major component of NCXmit in these cells. The store-operated Ca2+ entry was greatly attenuated in NCLX knockout lymphocytes, suggesting that substantial amount of Ca2+ enters into mitochondria and is released to cytosol via NCXmit. NCXmit or NCLX has pivotal roles in Ca2+ handling in mitochondria and cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H. Affolter, E. Carafoli, The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem. Biophys. Res. Commun. 95, 193–196 (1980)

    Article  PubMed  CAS  Google Scholar 

  • S. Arnaudeau, W.L. Kelley, J.V. Walsh Jr., N. Demaurex, Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276, 29430–29439 (2001)

    Article  PubMed  CAS  Google Scholar 

  • E. Barth, G. Stämmler, B. Speiser, J. Schaper, Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 24, 669–681 (1992)

    Article  PubMed  CAS  Google Scholar 

  • J.M. Baughman, F. Perocchi, H.S. Girgis, M. Plovanich, C.A. Belcher-Timme, Y. Sancak, X.R. Bao, L. Strittmatter, O. Goldberger, R.L. Bogorad, V. Koteliansky, V.K. Mootha, Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011)

    Article  PubMed  CAS  Google Scholar 

  • C.J. Bell, N.A. Bright, G.A. Rutter, E.J. Griffiths, ATP regulation in adult rat cardiomyocytes: time-resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J. Biol. Chem. 281, 28058–28067 (2006)

    Article  PubMed  CAS  Google Scholar 

  • P. Bernardi, Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 (1999)

    PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • M.D. Brand, The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. Biochem. J. 229, 161–166 (1985)

    PubMed  CAS  Google Scholar 

  • X. Cai, J. Lytton, Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J. Biol. Chem. 279, 5867–5876 (2004)

    Article  PubMed  CAS  Google Scholar 

  • E. Carafoli, The fateful encounter of mitochondria with calcium: how did it happen? Biochim. Biophys. Acta 1797, 595–606 (2010)

    Article  PubMed  CAS  Google Scholar 

  • E. Carafoli, R. Tiozzo, G. Lugli, F. Crovetti, C. Kratzing, The release of calcium from heart mitochondria by sodium. J. Mol. Cell. Cardiol. 6, 361–371 (1974)

    Article  PubMed  CAS  Google Scholar 

  • F. Celsi, P. Pizzo, M. Brini, S. Leo, C. Fotino, P. Pinton, R. Rizzuto, Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim. Biophys. Acta 1787, 335–344 (2009)

    Article  PubMed  CAS  Google Scholar 

  • W.C. Claycomb, N.A. Lanson Jr., B.S. Stallworth, D.B. Egeland, J.B. Delcarpio, A. Bahinski, N.J. Izzo Jr., HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl. Acad. Sci. U. S. A. 95, 2979–2984 (1998)

    Article  PubMed  CAS  Google Scholar 

  • S. Cortassa, M.A. Aon, B. O’Rourke, R. Jacques, H.J. Tseng, E. Marbán, R.L. Winslow, A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys. J. 91, 1564–1589 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Cox, M.A. Matlib, A role for the mitochondrial Na+-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J. Biol. Chem. 268, 938–947 (1993)

    PubMed  CAS  Google Scholar 

  • M. Crompton, M. Capano, E. Carafoli, The sodium induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium. Eur. J. Biochem. 69, 453–462 (1976)

    Article  CAS  Google Scholar 

  • M. Crompton, M. Künzi, E. Carafoli, The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur. J. Biochem. 79, 549–558 (1977)

    Article  PubMed  CAS  Google Scholar 

  • M. Crompton, R. Moser, H. Lüdi, E. Carafoli, The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur. J. Biochem. 82, 25–31 (1978)

    Article  PubMed  CAS  Google Scholar 

  • G. Csordás, G. Hajnóczky, SR/ER-mitochondrial local communication: calcium and ROS. Biochim. Biophys. Acta 1787, 1352–1362 (2009)

    Article  PubMed  Google Scholar 

  • H.F. DeLuca, G.W. Engstrom, Calcium uptake by rat kidney mitochondria. Proc. Natl. Acad. Sci. U. S. A. 47, 1744–1750 (1961)

    Article  PubMed  CAS  Google Scholar 

  • S. Despa, M.A. Islam, S.M. Pogwizd, D.M. Bers, Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J. Physiol. 539, 133–143 (2002)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beaugé, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.E. Doering, D.A. Nicoll, Y. Lu, L. Lu, J.N. Weiss, K.D. Philipson, Topology of a functionally important region of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 273, 778–783 (1998)

    Article  PubMed  CAS  Google Scholar 

  • S. Feske, Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007)

    Article  PubMed  CAS  Google Scholar 

  • P. Gobbi, P. Castaldo, A. Minelli, S. Salucci, S. Magi, E. Corcione, S. Amoroso, Mitochondrial localization of Na+/Ca2+ exchangers NCX1-3 in neurons and astrocytes of adult rat brain in situ. Pharmacol. Res. 56, 556–565 (2007)

    Article  PubMed  CAS  Google Scholar 

  • L.H. Hayat, M. Crompton, Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem. J. 202, 509–518 (1982)

    PubMed  CAS  Google Scholar 

  • M. Hoth, C.M. Fanger, R.S. Lewis, Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648 (1997)

    Article  PubMed  CAS  Google Scholar 

  • D. Jiang, L. Zhao, D.E. Clapham, Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009)

    Article  PubMed  CAS  Google Scholar 

  • H. Jo, A. Noma, S. Matsuoka, Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes. J. Mol. Cell. Cardiol. 40, 394–404 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D.W. Jung, K. Baysal, G.P. Brierley, The sodium-calcium antiport of heart mitochondria is not electroneutral. J. Biol. Chem. 270, 672–678 (1995)

    Article  PubMed  CAS  Google Scholar 

  • B. Kim, S. Matsuoka, Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. J. Physiol. 586, 1683–1697 (2008)

    Article  PubMed  CAS  Google Scholar 

  • B. Kim, A. Takeuchi, O. Koga, M. Hikida, S. Matsuoka, Pivotal role of mitochondrial Na+-Ca2+ exchange in antigen receptor mediated Ca2+ signalling in DT40 and A20 B lymphocytes. J. Physiol. (2012 in press)

    Google Scholar 

  • Y. Kirichok, G. Krapivinsky, D.E. Clapham, The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004)

    Article  PubMed  CAS  Google Scholar 

  • R. Malli, M. Frieden, M. Trenker, W.F. Graier, The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J. Biol. Chem. 280, 12114–12122 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S. Matsuoka, D.W. Hilgemann, Inactivation of outward Na+-Ca2+ exchange current in guinea-pig ventricular myocytes. J. Physiol. 476, 443–458 (1994)

    Google Scholar 

  • J.G. McCormack, A.P. Halestrap, R.M. Denton, Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990)

    PubMed  CAS  Google Scholar 

  • C.C. Mendes, D.A. Gomes, M. Thompson, N.C. Souto, T.S. Goes, A.M. Goes, M.A. Rodrigues, M.V. Gomez, M.H. Nathanson, M.F. Leite, The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J. Biol. Chem. 280, 40892–40900 (2005)

    Article  PubMed  CAS  Google Scholar 

  • M. Murgia, C. Giorgi, P. Pinton, R. Rizzuto, Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling. J. Mol. Cell. Cardiol. 46, 781–788 (2009)

    Article  PubMed  CAS  Google Scholar 

  • R. Palty, E. Ohana, M. Hershfinkel, M. Volokita, V. Elgazar, O. Beharier, W.F. Silverman, M. Argaman, I. Sekler, Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J. Biol. Chem. 279, 25234–25240 (2004)

    Article  PubMed  CAS  Google Scholar 

  • R. Palty, W.F. Silverman, M. Hershfinkel, T. Caporale, S.L. Sensi, J. Parnis, C. Nolte, D. Fishman, V. Shoshan-Barmatz, S. Herrmann, D. Khananshvili, I. Sekler, NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. U. S. A. 107, 436–441 (2010)

    Article  PubMed  CAS  Google Scholar 

  • A.B. Parekh, Mitochondrial regulation of store-operated CRAC channels. Cell Calcium 44, 6–13 (2008)

    Article  PubMed  CAS  Google Scholar 

  • P. Paucek, M. Jabůrek, Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter. Biochim. Biophys. Acta 1659, 83–91 (2004)

    Article  PubMed  CAS  Google Scholar 

  • F. Perocchi, V.M. Gohil, H.S. Girgis, X.R. Bao, J.E. McCombs, A.E. Palmer, V.K. Mootha, MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010)

    Article  PubMed  CAS  Google Scholar 

  • G.E. Petrzilka, H.E. Schroeder, Activation of human T-lymphocytes. A kinetic and stereological study. Cell Tissue Res. 201, 101–127 (1979)

    Article  PubMed  CAS  Google Scholar 

  • D. Poburko, C.H. Liao, C. van Breemen, N. Demaurex, Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells. Circ. Res. 104, 104–112 (2009)

    Article  PubMed  CAS  Google Scholar 

  • A. Quintana, C. Schwindling, A.S. Wenning, U. Becherer, J. Rettig, E.C. Schwarz, M. Hoth, T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. U. S. A. 104, 14418–14423 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S.Y. Ryu, G. Beutner, R.T. Dirksen, K.W. Kinnally, S.S. Sheu, Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett. 584, 1948–1955 (2010)

    Article  PubMed  CAS  Google Scholar 

  • V.K. Sharma, V. Ramesh, C. Franzini-Armstrong, S.S. Sheu, Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J. Bioenerg. Biomembr. 32, 97–104 (2000)

    Article  PubMed  CAS  Google Scholar 

  • G. Szabadkai, K. Bianchi, P. Várnai, D. De Stefani, M.R. Wieckowski, D. Cavagna, A.I. Nagy, T. Balla, R. Rizzuto, Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006)

    Article  PubMed  CAS  Google Scholar 

  • P.R. Territo, S.A. French, M.C. Dunleavy, F.J. Evans, R.S. Balaban, Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J. Biol. Chem. 276, 2586–2599 (2001)

    Article  PubMed  CAS  Google Scholar 

  • M. Vig, J.P. Kinet, Calcium signaling in immune cells. Nat. Immunol. 10, 21–27 (2009)

    Article  PubMed  CAS  Google Scholar 

  • S.M. White, P.E. Constantin, W.C. Claycomb, Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am. J. Physiol. Heart Circ. Physiol. 286, H823–H829 (2004)

    Article  PubMed  CAS  Google Scholar 

  • D.E. Wingrove, T.E. Gunter, Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J. Biol. Chem. 261, 15166–15171 (1986)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Matsuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, B., Takeuchi, A., Koga, O., Hikida, M., Matsuoka, S. (2013). Mitochondria Na+-Ca2+ Exchange in Cardiomyocytes and Lymphocytes. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_16

Download citation

Publish with us

Policies and ethics