Skip to main content

Disruption of Adenosine Homeostasis in Epilepsy and Therapeutic Adenosine Augmentation

  • Chapter
  • First Online:
Adenosine
  • 1483 Accesses

Abstract

Despite the development of new classes of antiepileptic drugs during the past 40 years, about a third of all patients with epilepsy continue to be refractory to conventional treatment. It becomes evident that a disorder of complex network dysfunction, such as epilepsy, cannot be treated in a comprehensive manner with traditional treatment approaches. In contrast, the homeostatic bioenergetic network regulator adenosine is uniquely suited to affect several different pathways and mechanisms synergistically on multiple different levels. Adenosine is a known endogenous anticonvulsant of the brain. Its levels rise during seizures, and this increase in adenosine is part of an endogenous control mechanism to terminate seizures. However, disrupted adenosine homeostasis and resulting adenosine deficiency is a pathological hallmark of the epileptic brain. Adenosine deficiency as such was recently shown to be sufficient to trigger seizures. Thus, adenosine augmentation therapy (AAT) is a rational intervention to treat epilepsy. Unfortunately, systemic AAT is not a therapeutic option due to unacceptable side effects. To circumvent this problem, focal AATs have been developed based on the rationale to reconstruct normal adenosine homeostasis within an epileptogenic brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anschel DJ, Ortega EL, Kraus AC, Fisher RS (2004) Focally injected adenosine prevents seizures in the rat. Exp Neurol 190:544–547

    Article  CAS  PubMed  Google Scholar 

  • Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, van Vliet EA, Baayen JC, Boison D, Gorter JA (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia. doi:10.1111/j.1528-1167.2011.03115.x, Epub ahead of print

  • Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–743

    Article  CAS  PubMed  Google Scholar 

  • Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 29:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2007) Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 5:115–125

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2009a) Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 85:131–141

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2009b) Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 6:278–283

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2010) Inhibitory RNA in epilepsy: research tool and therapeutic perspectives. Epilepsia 51:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Stewart K-A (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 78:1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Scheurer L, Tseng JL, Aebischer P, Mohler H (1999) Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 160:164–174

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Scheurer L, Zumsteg V, Rülicke T, Litynski P, Fowler B, Brandner S, Mohler H (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6990

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signalling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Masino MA, Geiger JD (2011a) Homeostatic bioenergetic network regulation—a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6:713–724

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Singer P, Shen HY, Feldon J, Yee BK (2011b) Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology 62(3):1527–43

    Article  PubMed  CAS  Google Scholar 

  • Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–227

    Article  PubMed  Google Scholar 

  • Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    Article  PubMed  Google Scholar 

  • Brunstein MG, Ghisolfi ES, Ramos FL, Lara DR (2004) Clinical trial for allopurinol adjuvant therapy for poorly responsive schizophrenia. Schizophr Res 67:S142

    Google Scholar 

  • Brunstein MG, Ghisolfi ES, Ramos FL, Lara DR (2005) A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry 66:213–219

    Article  CAS  PubMed  Google Scholar 

  • Clark RS, Carcillo JA, Kochanek PM, Obrist WD, Jackson EK, Mi Z, Wisneiwski SR, Bell MJ, Marion DW (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41:1284–1292, discussion 1292–1293

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–134

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JC, Hood DD, Curry R (2002a) Phase I safety assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 96:24–28

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JC, Hood DD, Curry R (2002b) Preliminary efficacy assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 96:29–34

    Article  CAS  PubMed  Google Scholar 

  • Erion MD, Wiesner JB, Rosengren S, Ugarkar BG, Boyer SH, Tsuchiya M (2000) Therapeutic potential of adenosine kinase inhibitors as analgesic agents. Drug Dev Res 50:S14–06

    Google Scholar 

  • Fedele DE, Koch P, Brüstle O, Scheurer L, Simpson EM, Mohler H, Boison D (2004) Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 370:160–165

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Muller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  CAS  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D (1996) Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 29:37–42

    Article  CAS  PubMed  Google Scholar 

  • Gernert M, Thompson KW, Loscher W, Tobin AJ (2002) Genetically engineered GABA-producing cells demonstrate anticonvulsant effects and long-term transgene expression when transplanted into the central piriform cortex of rats. Exp Neurol 176:183–192

    Article  CAS  PubMed  Google Scholar 

  • Gouder N, Fritschy JM, Boison D (2003) Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44:877–885

    Article  CAS  PubMed  Google Scholar 

  • Gouder N, Scheurer L, Fritschy J-M, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    Article  CAS  PubMed  Google Scholar 

  • Güttinger M, Fedele DE, Koch P, Padrun V, Pralong W, Brüstle O, Boison D (2005) Suppression of kindled seizures by paracrine adenosine release from stem cell derived brain implants. Epilepsia 46:1–8

    Article  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  PubMed  Google Scholar 

  • Hamiwka L, Macrodimitris S, Tellez-Zenteno JF, Metcalfe A, Wiebe S, Kwon CS, Jette N (2011) Social outcomes after temporal or extratemporal epilepsy surgery: a systematic review. Epilepsia 52:870–879

    Article  PubMed  Google Scholar 

  • Hasko G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516

    Article  CAS  PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty AK (2008) Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 212:468–481

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Heinemann U, Kann O, Remy S, Beck H (2006) Novel mechanisms underlying drug resistance in temporal lobe epilepsy. Adv Neurol 97:85–95

    PubMed  Google Scholar 

  • Herzog AG (2009) Hormonal therapies: progesterone. Neurotherapeutics 6:383–391

    Article  CAS  PubMed  Google Scholar 

  • Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    Article  CAS  PubMed  Google Scholar 

  • Hinterkeuser S, Schroder W, Hager G, Seifert G, Blumcke I, Elger CE, Schramm J, Steinhauser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096

    Article  CAS  PubMed  Google Scholar 

  • Huber A, Padrun V, Deglon N, Aebischer P, Mohler H, Boison D (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98:7611–7616

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MF, Yu H, Kohlhaas K, Alexander K, Lee CH, Jiang M, Bhagwat SS, Williams M, Kowaluk EA (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholinopyridin-3-yl)pyrido[2, 3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties: I. In vitro characterization and acute antinociceptive effects in the mouse. J Pharmacol Exp Ther 295:1156–1164

    CAS  PubMed  Google Scholar 

  • Kanter-Schlifke I, Toft Sorensen A, Ledri M, Kuteeva E, Hokfelt T, Kokaia M (2007) Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience 150:984–992

    Article  CAS  PubMed  Google Scholar 

  • Kokaia M, Aebischer P, Elmér E, Bengzon J, Kalén P, Kokaia Z, Lindvall O (1994) Seizure suppression in kindling epilepsy by intracerebral implants of GABA- but not by noradrenaline-releasing polymer matrices. Exp Brain Res 100:385–394

    Article  CAS  PubMed  Google Scholar 

  • Kossoff EH, Rho JM (2009) Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics 6:406–414

    Article  CAS  PubMed  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kowaluk EA, Mikusa J, Wismer CT, Zhu CZ, Schweitzer E, Lynch JJ, Lee CH, Jiang M, Bhagwat SS, Gomtsyan A et al (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin- 3-yl)pyrido[2,3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295:1165–1174

    CAS  PubMed  Google Scholar 

  • Li T, Lan JQ, Fredholm BB, Simon RP, Boison D (2007a) Adenosine dysfunction in astrogliosis: cause for seizure generation? Neuron Glia Biol 3:353–366

    Article  PubMed  Google Scholar 

  • Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A, Segschneider M, Simon RP, Brustle O, Boison D (2007b) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130:1276–1288

    Article  PubMed  Google Scholar 

  • Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 118:571–582

    Article  CAS  PubMed  Google Scholar 

  • Li T, Ren G, Kaplan DL, Boison D (2009) Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 84:238–241

    Article  CAS  PubMed  Google Scholar 

  • Li T, Lytle N, Lan J-Q, Sandau US, Boison D (2011) Local disruption of glial adenosine homeostasis in mice triggers focal electrographic seizures: a first step in epileptogenesis? Glia 60(1):83–95

    Article  PubMed  Google Scholar 

  • Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123

    Article  CAS  PubMed  Google Scholar 

  • Loscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52:657–678

    Article  PubMed  Google Scholar 

  • Loscher W, Gernert M, Heinemann U (2008) Cell and gene therapies in epilepsy—promising avenues or blind alleys? Trends Neurosci 31:62–73

    Article  PubMed  CAS  Google Scholar 

  • Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger JD, Aronica E, Boison D (2011) A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest 121:2679–2683

    Article  CAS  PubMed  Google Scholar 

  • Mato JM, Martinez-Chantar ML, Lu SC (2008) Methionine metabolism and liver disease. Annu Rev Nutr 28:273–293

    Article  CAS  PubMed  Google Scholar 

  • Mazarati AM (2004) Galanin and galanin receptors in epilepsy. Neuropeptides 38:331–343

    Article  CAS  PubMed  Google Scholar 

  • McCown TJ (2004) The clinical potential of antiepileptic gene therapy. Expert Opin Biol Ther 4:1771–1776

    Article  CAS  PubMed  Google Scholar 

  • McCown TJ (2009) Adeno-associated virus vector-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity. Neurotherapeutics 6:307–311

    Article  CAS  PubMed  Google Scholar 

  • McGaraughty S, Jarvis MF (2006) Purinergic control of neuropathic pain. Drug Dev Res 67:376–388

    Article  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  CAS  PubMed  Google Scholar 

  • Monopoli A, Conti A, Dionisotti S, Casati C, Camaioni E, Cristalli G, Ongini E (1994) Pharmacology of the highly selective A1 adenosine receptor agonist 2-chloro-N6-cyclopentyladenosine. Arzneimittelforschung 44:1305–1312

    CAS  PubMed  Google Scholar 

  • Nadkarni S, LaJoie J, Devinsky O (2005) Current treatments of epilepsy. Neurology 64:S2–S11

    Article  CAS  PubMed  Google Scholar 

  • Nilsen KE, Cock HR (2004) Focal treatment for refractory epilepsy: hope for the future? Brain Res Brain Res Rev 44:141–153

    Article  PubMed  Google Scholar 

  • Noe F, Frasca A, Balducci C, Carli M, Sperk G, Ferraguti F, Pitkanen A, Bland R, Fitzsimons H, During M et al (2009) Neuropeptide Y overexpression using recombinant adeno-associated viral vectors. Neurotherapeutics 6:300–306

    Article  CAS  PubMed  Google Scholar 

  • Nolte MW, Loscher W, Herden C, Freed WJ, Gernert M (2008) Benefits and risks of intranigral transplantation of GABA-producing cells subsequent to the establishment of kindling-induced seizures. Neurobiol Dis 314:342–354

    Article  CAS  Google Scholar 

  • Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, Haydon PG, Coulter DA (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591

    Article  CAS  PubMed  Google Scholar 

  • Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP (2005) Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 111:218–224

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Maysami S, Studer FE, Wilz A, Simon RP, Boison D (2008) Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 28:17–23

    Article  CAS  PubMed  Google Scholar 

  • Pritchard EM, Szybala C, Boison D, Kaplan DL (2010) Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 144:159–167

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2010) Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis 39:53–60

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ, Burnham WM (1984) The kindling model. In: Schwartz-kroin P, Wheal H (eds) Electrophysiology of epilepsy. Academic, London, pp 153–171

    Google Scholar 

  • Raedt R, Van Dycke A, Vonck K, Boon P (2007) Cell therapy in models for temporal lobe epilepsy. Seizure 16:565–578

    Article  CAS  PubMed  Google Scholar 

  • Ramesha KN, Mooney T, Sarma PS, Radhakrishnan K (2011) Long-term seizure outcome and its predictors in patients with recurrent seizures during the first year aftertemporal lobe resective epilepsy surgery. Epilepsia 52:917–924

    Article  PubMed  Google Scholar 

  • Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D (2007) Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 208:26–37

    Article  CAS  PubMed  Google Scholar 

  • Riban V, Fitzsimons HL, During MJ (2009) Gene therapy in epilepsy. Epilepsia 50:24–32

    Article  CAS  PubMed  Google Scholar 

  • Seifert G, Carmignoto G, Steinhauser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63:212–221

    Article  CAS  PubMed  Google Scholar 

  • Shen H-Y, Coelho JE, Ohtsuka N, Canas PM, Day Y-J, Huang Q-Y, Rebola N, Yu L, Boison D, Cunha RA et al (2008) A critical role of the adenosine A2A receptor in extra-striatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum- and forebrain-A2A receptor knockouts. J Neurosci 28:2970–2975

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Lusardi TA, Williams-Karnesky RL, Lan JQ, Poulsen DJ, Boison D (2011) Adenosine kinase determines the degree of brain injury after ischemic stroke in mice. J Cereb Blood Flow Metab 31:1648–1659

    Article  CAS  PubMed  Google Scholar 

  • Sherman EM, Wiebe S, Fay-McClymont TB, Tellez-Zenteno J, Metcalfe A, Hernandez-Ronquillo L, Hader WJ, Jette N (2011) Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia 52:857–869

    Article  PubMed  Google Scholar 

  • Shetty AK, Hattiangady B (2007) Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells 25:2396–2407

    Article  PubMed  Google Scholar 

  • Sorensen AT, Kanter-Schlifke I, Carli M, Balducci C, Noe F, During MJ, Vezzani A, Kokaia M (2008) NPY gene transfer in the hippocampus attenuates synaptic plasticity and learning. Hippocampus 18:564–574

    Article  CAS  PubMed  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Szybala C, Pritchard EM, Wilz A, Kaplan DL, Boison D (2009) Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 219:126–135

    Article  CAS  PubMed  Google Scholar 

  • Theodore WH, Fisher R (2007) Brain stimulation for epilepsy. Acta Neurochir Suppl 97:261–272

    Article  CAS  PubMed  Google Scholar 

  • Theofilas P, Brar S, Stewart K-A, Shen H-Y, Sandau US, Poulsen DJ, Boison D (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589–601

    Article  PubMed  Google Scholar 

  • Thompson KW (2005) Genetically engineered cells with regulatable GABA production can affect afterdischarges and behavioral seizures after transplantation into the dentate gyrus. Neuroscience 133:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Tian GF, Azmi H, Takano T, Xu QW, Peng WG, Lin J, Oberheim N, Lou NH, Wang XH, Zielke HR et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    CAS  PubMed  Google Scholar 

  • Vezzani A (2007) The promise of gene therapy for the treatment of epilepsy. Expert Rev Neurother 7:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A (2008) Epileptogenic role of astrocyte dysfunction. Epilepsy Curr 8:46–47

    Article  PubMed  Google Scholar 

  • Vezzani A, Ravizza T, Balosso S, Aronica E (2008) Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49(Suppl 2):24–32

    Article  CAS  PubMed  Google Scholar 

  • Wieser HG (1996) Epilepsy surgery. Baillieres Clin Neurol 5:849–875

    CAS  PubMed  Google Scholar 

  • Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H (2005) Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. Brain 128:1199–1208

    Article  PubMed  Google Scholar 

  • Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D (2008) Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 29:3609–3616

    Article  CAS  PubMed  Google Scholar 

  • Wrench JM, Rayner G, Wilson SJ (2011) Profiling the evolution of depression after epilepsy surgery. Epilepsia 52:900–908

    Article  PubMed  Google Scholar 

  • Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen JF (2004) Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work of the author is supported by grants R01NS058780, R01NS061844, and R01MH083973 from the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Boison Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boison, D. (2013). Disruption of Adenosine Homeostasis in Epilepsy and Therapeutic Adenosine Augmentation. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_26

Download citation

Publish with us

Policies and ethics