Skip to main content

Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology

  • Chapter
  • First Online:
Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

Mitochondrial disorders are clinical syndromes associated with ­abnormalities of the oxidative phosphorylation (OXPHOS) system, the main responsible for the production of energy in the cell. OXPHOS is carried out in the inner mitochondrial membrane by the five enzymatic complexes of the mitochondrial respiratory chain (MRC). The subunits constituting these multimeric complexes have a dual genetic origin, mitochondrial or nuclear. Hence, mitochondrial syndromes can be due to mutations of mitochondrial DNA or to abnormalities in nuclear genes. The biogenesis of the MRC complexes is an intricate and finely tuned process. The recent discovery of several OXPHOS-related human genes, mutated in different clinical syndromes, indicates that the majority of the inherited mitochondrial disorders are due to nuclear genes, and many of them encode proteins necessary for the proper assembly/stability of the MRC complexes. The detailed mechanisms of these processes are not fully understood and the exact function of many such factors remains obscure.

We present an overview on the hypothesized assembly processes of the different MRC complexes, focusing on known assembly factors and their clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acín-Pérez R, Bayona-Bafaluy MP, Fernández-Silva P et al (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815

    Google Scholar 

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    PubMed  Google Scholar 

  • Ackerman SH, Tzagoloff A (1990) Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proc Natl Acad Sci USA 87:4986–4990

    PubMed  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO et al (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    PubMed  CAS  Google Scholar 

  • Antonicka H, Leary SC, Guercin GH et al (2003) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702

    PubMed  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur J Biochem 249:350–354

    PubMed  CAS  Google Scholar 

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178

    PubMed  CAS  Google Scholar 

  • Barghuti F, Elian K, Gomori JM, Shaag A, Edvardson S, Saada A, Elpeleg O (2008) The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab 94:78–82

    PubMed  CAS  Google Scholar 

  • Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F (2009) Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim Biophys Acta 1793:97–107

    PubMed  CAS  Google Scholar 

  • Barth PG, Wanders RJ, Vreken P, Janssen EA, Lam J, Baas F (1999) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J Inherit Metab Dis 22:555–567

    PubMed  CAS  Google Scholar 

  • Bayley JP, Devilee P (2010) Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev 20:324–329

    PubMed  CAS  Google Scholar 

  • Bayley JP, Kunst HP, Cascon A et al (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372

    PubMed  CAS  Google Scholar 

  • Bellí G, Molina MM, García-Martínez J, Pérez-Ortín JE, Herrero E (2004) Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes. J Biol Chem 279:12386–12395

    PubMed  Google Scholar 

  • Bernard DG, Gabilly ST, Dujardin G, Merchant S, Hamel PP (2003) Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases. J Biol Chem 278:49732–49742

    PubMed  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    PubMed  CAS  Google Scholar 

  • Birchmeier W, Kohler CE, Schatz G (1976) Interaction of integral and peripheral membrane proteins: affinity labeling of yeast cytochrome oxidase by modified yeast cytochrome c. Proc Natl Acad Sci USA 73:4334–4338

    PubMed  CAS  Google Scholar 

  • Blair PV (1967) Preparation and properties of repeating units of electron transfer. Methods Enzymol 10:208–212

    CAS  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939

    PubMed  CAS  Google Scholar 

  • Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonimski PP, Dujardin G (1994) Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1- mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 91:11978–11982

    PubMed  CAS  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase–some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    PubMed  CAS  Google Scholar 

  • Boyer PD (1997) The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66:717–749

    PubMed  CAS  Google Scholar 

  • Brandt U, Yu L, Yu CA, Trumpower BL (1993) The mitochondrial targeting presequence of the Rieske iron–sulfur protein is processed in a single step after insertion into the cytochrome bc1 complex in mammals and retained as a subunit in the complex. J Biol Chem 268:8387–8390

    PubMed  CAS  Google Scholar 

  • Bugiani M, Invernizzi F, Alberio S et al (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659:136–147

    PubMed  CAS  Google Scholar 

  • Bundschuh FA, Hannappel A, Anderka O et al (2009) Surf1, associated with Leigh syndrome in humans, is a heme-binding protein in bacterial oxidase biogenesis. J Biol Chem 284:25735–25741

    PubMed  CAS  Google Scholar 

  • Bych K, Kerscher S, Netz DJA, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J (2008) Ind1 is requie for effective complex I assembly. EMBO J 27:1736–1746

    PubMed  CAS  Google Scholar 

  • Calvo SE, Tucker EJ, Compton AG et al (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858

    PubMed  CAS  Google Scholar 

  • Camaschella C, Campanella A, DeFalco L et al (2007) The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110:1353–1358

    PubMed  CAS  Google Scholar 

  • Cameron JM, Levandovskiy V, Mackay N et al (2011a) Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization. Mitochondrion 11:191–199

    PubMed  CAS  Google Scholar 

  • Cameron JM, Janer A, Levandovskiy V et al (2011b) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89:486–495

    PubMed  CAS  Google Scholar 

  • Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    PubMed  CAS  Google Scholar 

  • Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochim Biophys Acta 694:291–306

    PubMed  CAS  Google Scholar 

  • Carrol J, Fearnley IM, Skehel JM et al (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Google Scholar 

  • Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    PubMed  CAS  Google Scholar 

  • Cizkova A, Stranecky V, Mayr JA et al (2008) TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet 40:1288–1290

    PubMed  CAS  Google Scholar 

  • Coenen MJ, Smeitink JA, Smeets R, Trijbels FJ, van den Heuvel LP (2005) Mutation detection in four candidate genes (OXA1L, MRS2L, YME1L and MIPEP) for combined deficiencies in the oxidative phosphorylation system. J Inherit Metab Dis 28:1091–1097

    PubMed  CAS  Google Scholar 

  • Collinson IR, Skehel JM, Fearnley IM, Runswick MJ, Walker JE (1996) The F1F0-ATPase complex from bovine heart mitochondria: the molar ratio of the subunits in the stalk region linking the F1 and F0 domains. Biochemistry 35:12640–12646

    PubMed  CAS  Google Scholar 

  • Cree LM, Samuels DC, Chinnery PF (2009) The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta 1792:1097–1102

    PubMed  CAS  Google Scholar 

  • Cruciat CM, Hell K, Fölsch H, Neupert W, Stuart RA (1999) Bcs1p, an AAA-family member, is a chaperone for the assembly of the cytochrome bc(1) complex. EMBO J 18:5226–5233

    PubMed  CAS  Google Scholar 

  • Darley-Usmar VM, Georgevich G, Capaldi RA (1984) Reaction of thionitrobenzoate-modified yeast cytochrome c with monomeric and dimeric forms of beef heart cytochrome c oxidase. FEBS Lett 166:131–135

    PubMed  CAS  Google Scholar 

  • De Lonlay P, Valnot I, Barrientos A et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60

    PubMed  Google Scholar 

  • De Meirleir L, Seneca S, Lissens W et al (2004) Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J Med Genet 41:120–124

    PubMed  Google Scholar 

  • Dell’agnello C, Leo S, Agostino A, Szabadkai G et al (2007) Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 16:431–444

    PubMed  Google Scholar 

  • Devenish RJ, Prescott M, Rodgers AJ (2008) The structure and function of mitochondrial F1F0-ATP synthases. Int Rev Cell Mol Biol 267:1–58

    PubMed  CAS  Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    Google Scholar 

  • Dibrov E, Fu S, Lemire BD (1998) The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J Biol Chem 273:32042

    PubMed  CAS  Google Scholar 

  • DiMauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    PubMed  CAS  Google Scholar 

  • Distelmaier F, Koopman WJ, van den Heuvel LP et al (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833–842

    PubMed  Google Scholar 

  • Dunning CJ, McKenzie M, Sugiana C et al (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 1126:3227–3237

    Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    PubMed  Google Scholar 

  • Fassone E, Duncan AJ, Taanman JW et al (2010) FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile onset mitochondrial encephalopathy. Hum Mol Genet 19:4837–4847

    PubMed  CAS  Google Scholar 

  • Feichtinger RG, Zimmermann F, Mayr JA et al (2010) Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer 10:149

    PubMed  Google Scholar 

  • Fernandez-Vizarra E, Bugiani M, Goffrini P et al (2007) Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet 16:1241–1252

    PubMed  CAS  Google Scholar 

  • Fernandez-Vizarra E, Tiranti V, Zeviani M (2009) Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim Biophys Acta 1793:200–211

    PubMed  CAS  Google Scholar 

  • Fontanesi F, Soto IC, Horn D, Barrientos A (2006) Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 291:C1129–C1147

    PubMed  CAS  Google Scholar 

  • Fowler LR, Richardson SH (1963) Studies on the electron transfer system. On the mechanism of reconstitution of the mitochondrial electron transfer system. J Biol Chem 238:456–463

    PubMed  CAS  Google Scholar 

  • Gerards M, Sluiter W, van den Bosch BJ et al (2010) Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J Med Genet 47:507–512

    PubMed  CAS  Google Scholar 

  • Gerards M, van den Bosch BJ, Danhauser K et al (2011) Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134:210–219

    PubMed  Google Scholar 

  • Ghezzi D, Zeviani M (2011) Mitochondrial disorders: nuclear gene mutations. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.

    Google Scholar 

  • Ghezzi D, Goffrini P, Uziel G et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41:654–656

    PubMed  CAS  Google Scholar 

  • Ghezzi D, Arzuffi P, Zordan M et al (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263

    PubMed  CAS  Google Scholar 

  • Gilkerson RW, Selker JM, Capaldi RA (2003) The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546:355–358

    PubMed  CAS  Google Scholar 

  • González-Cabo P, Vázquez-Manrique RP, García-Gimeno MA, Sanz P, Palau F (2005) Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet 14:2091–2098

    PubMed  Google Scholar 

  • Grossman LI, Lomax MI (1997) Nuclear genes for cytochrome c oxidase. Biochim Biophys Acta 1352:174–192

    PubMed  CAS  Google Scholar 

  • Haack TB, Danhauser K, Haberberger B et al (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42:1131–1134

    PubMed  CAS  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    PubMed  CAS  Google Scholar 

  • Hägerhäll C (1997) Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320:107–141

    PubMed  Google Scholar 

  • Hägerhäll C, Hederstedt L (1997) A structural model for the membrane-integral domain of succinate: quinone oxidoreductases. FEBS Lett 389:25

    Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 28:1139–1142

    Google Scholar 

  • Hederstedt L (2002) Succinate:quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. Biochim Biophys Acta 1553:74–83

    PubMed  CAS  Google Scholar 

  • Hinson JT, Fantin VR, Schonberger J et al (2007) Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. N Engl J Med 356:809–819

    PubMed  CAS  Google Scholar 

  • Honzík T, Tesarová M, Mayr JA et al (2010) Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. J Arch Dis Child 95:296–301

    Google Scholar 

  • Houstek J, Klement P, Floryk D et al (1999) A novel deficiency of mitochondrial ATPase of nuclear origin. Hum Mol Genet 8:1967–1974

    PubMed  CAS  Google Scholar 

  • Houstek J, Pickova A, Vojtiskova A, Mracek T, Pecina P, Jesina P (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta 1757:1400–1405

    PubMed  CAS  Google Scholar 

  • Houstek J, Kmoch S, Zeman J (2009) TMEM70 protein – a novel ancillary factor of mammalian ATP synthase. Biochim Biophys Acta 1787:529–532

    PubMed  CAS  Google Scholar 

  • Huigsloot M, Nijtmans LG, Szklarczyk R et al (2011) A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet 88:488–493

    PubMed  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    PubMed  CAS  Google Scholar 

  • Huynen MA, Spronk CA, Gabaldón T, Snel B (2005) Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett 579:591–596

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71

    PubMed  CAS  Google Scholar 

  • Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    PubMed  CAS  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome c-mediated apoptosis. Annu Rev Biochem 73:87–106

    PubMed  CAS  Google Scholar 

  • Jonckheere A, Hogeveen M, Nijtmans L et al (2008) A novel mitochondrial ATP8 (MT-ATP8) gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet 45:129–133

    PubMed  CAS  Google Scholar 

  • Joost K, Rodenburg R, Piirsoo A et al (2010) A novel mutation in the SCO2 gene in a neonate with early-onset cardioencephalomyopathy. Pediatr Neurol 42:227–230

    PubMed  Google Scholar 

  • Kim KD, Chung WH, Kim HJ, Lee KC, Roe JH (2010) Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast. Biochem Biophys Res Commun 392:467–472

    PubMed  CAS  Google Scholar 

  • Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309

    PubMed  CAS  Google Scholar 

  • Kollberg G, Tulinius M, Melberg A et al (2009) Clinical manifestation and a new ISCU mutation in iron-sulphur cluster deficiency myopathy. Brain 132:2170–2179

    PubMed  Google Scholar 

  • Koopman WJ, Nijtmans LG, Dieteren CE et al (2010) Mammalian mitochondrial complex I: biogenesis, regulation and reactive oxygen species generation. Antioxid Redox Signal 12:1431–1470

    PubMed  CAS  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004) Supramolecular organization of cytochrome c oxidaseand alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserine. J Biol Chem 279:26453–26461

    PubMed  CAS  Google Scholar 

  • Krause F, Reifschneider NH, Goto S, Dencher NA (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329:583–590

    PubMed  CAS  Google Scholar 

  • Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH: ubiquinone oxidoreductase (complex I). J Mol Biol 283:409–417

    PubMed  CAS  Google Scholar 

  • Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, Zeviani M (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12:49–52

    PubMed  Google Scholar 

  • Lancaster CR, Kroger A, Auer M, Michel H (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution. Nature 402:377–385

    PubMed  CAS  Google Scholar 

  • Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237

    PubMed  CAS  Google Scholar 

  • Lazarou M, Smith SM, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS J 276:6701–6713

    PubMed  CAS  Google Scholar 

  • Leary SC, Kaufman BA, Pellecchia G et al (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13:1839–1848

    PubMed  CAS  Google Scholar 

  • Leary SC, Cobine PA, Kaufman BA et al (2007) The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5:9–20

    PubMed  CAS  Google Scholar 

  • Lee SJ, Yamashita E, Abe T et al (2001) Intermonomer interactions in dimer of bovine heart cytochrome c oxidase. Acta Crystallogr D: Biol Crystallogr 57:941–947

    CAS  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Carelli V, D’Aurelio M, Sgarbi G, Solaini G (2004) Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta 1658:89–94

    PubMed  CAS  Google Scholar 

  • Levéen P, Kotarsky H, Mörgelin M, Karikoski R, Elmér E, Fellman V (2011) The GRACILE mutation introduced into Bcs1l causes postnatal complex III deficiency: a viable mouse model for mitochondrial hepatopathy. Hepatology 53:437–447

    PubMed  Google Scholar 

  • Li K, Tong WH, Hughes RM, Rouault TA (2006) Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J Biol Chem 281:12344–12351

    PubMed  CAS  Google Scholar 

  • Li H, Gakh O, Smith DY, Isaya G (2009) Oligomeric yeast frataxin drives assembly of core machinery for mitochondrial iron-sulfur cluster synthesis. J Biol Chem 284:21971–21980

    PubMed  CAS  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356

    PubMed  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700

    PubMed  CAS  Google Scholar 

  • Loeffen JL, Smeitink JA, Trijbels JM et al (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134

    PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagini G, Currò D et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    PubMed  CAS  Google Scholar 

  • Mashkevich G, Repetto B, Glerum DM, Jin C, Tzagoloff A (1997) SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration. J Biol Chem 272:14356–14364

    PubMed  CAS  Google Scholar 

  • Massa V, Fernandez-Vizarra E, Alshahwan S et al (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 82:1281–1289

    PubMed  CAS  Google Scholar 

  • Mayr JA, Havlícková V, Zimmermann F et al (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet 19:3430–3439

    PubMed  CAS  Google Scholar 

  • McFarland R, Turnbull DM (2009) Batteries not included: diagnosis and management of mitochondrial disease. J Intern Med 265:210–228

    PubMed  CAS  Google Scholar 

  • McKenzie M, Ryan MT (2010) Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62:497–502

    PubMed  CAS  Google Scholar 

  • Mick DU, Wagner K, van der Laan M et al (2007) Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly. EMBO J 26:4347–4358

    PubMed  CAS  Google Scholar 

  • Mochel F, Knight MA, Tong WH et al (2008) Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 82:652–660

    PubMed  CAS  Google Scholar 

  • Mootha VK, Lepage P, Miller K (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 100:605–610

    PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899

    PubMed  CAS  Google Scholar 

  • Munnich A, Rustin P (2001) Clinical spectrum and diagnosis of mitochondrial disorders. Am J Med Genet 106:4–17

    PubMed  CAS  Google Scholar 

  • Nakamura K, Yamaki M, Sarada M et al (1996) Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli. J Biol Chem 271:521–527

    PubMed  CAS  Google Scholar 

  • Nargang FE, Preuss M, Neupert W, Herrmann JM (2002) The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277:12846–12853

    PubMed  CAS  Google Scholar 

  • Nijtmans LG, Klement P, Houstek J, van den Bogert C (1995) Assembly of mitochondrial ATP synthase in cultured human cells: implications for mitochondrial diseases. Biochim Biophys Acta 1272:190–198

    PubMed  Google Scholar 

  • Nijtmans LG, Taanman JW, Muijsers AO, Speijer D, Van den Bogert C (1998) Assembly of cytochrome-c oxidase in cultured human cells. Eur J Biochem 254:389–394

    PubMed  CAS  Google Scholar 

  • Nobrega FG, Nobrega MP, Tzagoloff A (1992) BCS1, a novel gene required for the expression of functional Rieske iron–sulfur protein in Saccharomyces cerevisiae. EMBO J 11:3821–3829

    PubMed  CAS  Google Scholar 

  • Nouws J, Nijtmans L, Houten SM et al (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294

    PubMed  CAS  Google Scholar 

  • Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792

    PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    PubMed  CAS  Google Scholar 

  • Papadopoulou LC, Sue CM, Davidson MM et al (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337

    PubMed  CAS  Google Scholar 

  • Paumard P, Vaillier J, Coulary B et al (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230

    PubMed  CAS  Google Scholar 

  • Pecina P, Houstkova H, Hansıkova H, Zeman J, Houstek J (2004) Genetic defects of cytochrome c oxidase assembly. Physiol Res 53:S213–S223

    PubMed  CAS  Google Scholar 

  • Piekutowska-Abramczuk D, Magner M, Popowska E et al (2009) SURF1 missense mutations promote a mild Leigh phenotype. Clin Genet 76:195–204

    PubMed  CAS  Google Scholar 

  • Pondarré C, Antiochos BB, Campagna DR et al (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 15:953–964

    PubMed  Google Scholar 

  • Pronicki M, Kowalski P, Piekutowska-Abramczuk D et al (2010) A homozygous mutation in the SCO2 gene causes a spinal muscular atrophy like presentation with stridor and respiratory insufficiency. Eur J Paediatr Neurol 14:253–260

    PubMed  Google Scholar 

  • Rabl R, Soubannier V, Scholz R et al (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185:1047–1063

    PubMed  CAS  Google Scholar 

  • Rak M, Gokova S, Tzagoloff A (2011) Modular assembly of yeast mitochondrial ATP synthase. EMBO J 30:920–930

    PubMed  CAS  Google Scholar 

  • Remacle C, Barbieri MR, Cardol P, Hamel PP (2008) Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 280:93–110

    PubMed  CAS  Google Scholar 

  • Robinson KM, Lemire BD (1996) Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding. J Biol Chem 271:4055–4060

    PubMed  CAS  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24:398–407

    PubMed  CAS  Google Scholar 

  • Saada A, Edvardson S, Rapoport M et al (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38

    PubMed  CAS  Google Scholar 

  • Saada A, Vogel RO, Hoefs SJ et al (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727

    PubMed  CAS  Google Scholar 

  • Saada A, Edvardson S, Shaag A et al (2012) Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7. J Inherit Metab Dis 35(1):125–131

    PubMed  CAS  Google Scholar 

  • Sasarman F, Brunel-Guitton C, Antonicka H et al (2010) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323

    PubMed  CAS  Google Scholar 

  • Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders: past, present and future. Biochim Biophys Acta 1659:115–120

    PubMed  CAS  Google Scholar 

  • Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 46:12579–12585

    PubMed  Google Scholar 

  • Schägger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    PubMed  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    PubMed  CAS  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    PubMed  CAS  Google Scholar 

  • Schatz G (1968) Impaired binding of mitochondrial adenosine triphosphatase in the cytoplasmic “petite” mutant of Saccharomyces cerevisiae. J Biol Chem 243:2192–2199

    PubMed  CAS  Google Scholar 

  • Scheffler IE, Yadava N, Potluri P (2004) Molecular genetics of complex I-deficient Chinese hamster cell lines. Biochim Biophys Acta 1659:160–171

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    PubMed  CAS  Google Scholar 

  • Schneider D, Pohl T, Walter J et al (2008) Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777:735–739

    PubMed  CAS  Google Scholar 

  • Schon EA, Santra S, Pallotti F, Girvin ME (2001) Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin Cell Dev Biol 12:441–448

    PubMed  CAS  Google Scholar 

  • Seeger J, Schrank B, Pyle A et al (2010) Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscul Disord 20:720–724

    PubMed  Google Scholar 

  • Sheftel AD, Stehling O, Pierik AJ et al (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073

    PubMed  CAS  Google Scholar 

  • Sperl W, Jesina P, Zeman J et al (2006) Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscul Disord 16:821–829

    PubMed  CAS  Google Scholar 

  • Spiegel R, Khayat M, Shalev SA et al (2011) TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome. J Med Genet 48:177–182

    PubMed  Google Scholar 

  • Stiburek L, Vesela K, Hansikova H et al (2005) Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J 392:625–632

    PubMed  CAS  Google Scholar 

  • Stiburek L, Hansikova H, Tesarova M, Cerna L, Zeman J (2006) Biogenesis of eukaryotic cytochrome c oxidase. Physiol Res 55:S27–S41

    PubMed  CAS  Google Scholar 

  • Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J (2007) Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 374:506–516

    Google Scholar 

  • Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J (2009) Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am J Physiol Cell Physiol 296:C1218–C1226

    PubMed  CAS  Google Scholar 

  • Sugiana C, Pagliarini DJ, McKenzie M et al (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478

    PubMed  CAS  Google Scholar 

  • Sun F, Huo X, Zhai Y et al (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    PubMed  CAS  Google Scholar 

  • Tatuch Y, Robinson BH (1993) The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem Biophys Res Commun 192:124–128

    PubMed  CAS  Google Scholar 

  • Thorburn DR, Sugiana C, Salemi R et al (2004) Biochemical and molecular diagnosis of mitochondrial respiratory chain disorders. Biochim Biophys Acta 1659:121–128

    PubMed  CAS  Google Scholar 

  • Tiranti V, Hoertnagel K, Carrozzo R et al (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63:1609–1621

    PubMed  CAS  Google Scholar 

  • Tiranti V, Galimberti C, Nijtmans L, Bovolenta S, Perini MP, Zeviani M (1999) Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum Mol Genet 8:2533–2540

    PubMed  CAS  Google Scholar 

  • Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab 3:199–210

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E et al (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    PubMed  CAS  Google Scholar 

  • Tzagoloff A (1969) Assembly of the mitochondrial membrane system. II. Synthesis of the mitochondrial adenosine triphosphatase, F1. J Biol Chem 244:5027–5033

    PubMed  CAS  Google Scholar 

  • Tzagoloff A, Jang J, Glerum M, Wu M (1996) FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem 271:7392–7397

    PubMed  CAS  Google Scholar 

  • Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667

    PubMed  CAS  Google Scholar 

  • Valnot I, Osmond S, Gigarel N et al (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109

    PubMed  CAS  Google Scholar 

  • van Nederveen FH, Gaal J, Favier J et al (2009) An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10:764–771

    PubMed  Google Scholar 

  • Visapää I, Fellman V, Vesa J et al (2002) GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71:863–876

    PubMed  Google Scholar 

  • Vogel RO, Smeitink JA, Nijtmans LG (2007) Human mitochondrial complex I assembly: a dynamic and versatile process. Biochim Biophys Acta 1767:1215–1227

    PubMed  CAS  Google Scholar 

  • Wagner K, Perschil I, Fichter CD, van der Laan M (2010) Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i. Mol Biol Cell 21:1494–1504

    PubMed  CAS  Google Scholar 

  • Wang ZG, Sheluho D, Gatti DL, Ackerman SH (2000) The alpha-subunit of the mitochondrial F(1) ATPase interacts directly with the assembly factor Atp12p. EMBO J 19:1486–1493

    PubMed  CAS  Google Scholar 

  • Wang ZG, White PS, Ackerman SH (2001) Atp11p and Atp12p are assembly factors for the F(1)-ATPase in human mitochondria. J Biol Chem 276:30773–30778

    PubMed  CAS  Google Scholar 

  • Weraarpachai W, Antonicka H, Sasarman F et al (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41:833–837

    PubMed  CAS  Google Scholar 

  • West AP, Brodsky IE, Rahner C et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    PubMed  CAS  Google Scholar 

  • Williams SL, Valnot I, Rustin P, Taanman JW (2004) Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J Biol Chem 279:7462–7469

    PubMed  CAS  Google Scholar 

  • Wittig I, Schägger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–680

    PubMed  CAS  Google Scholar 

  • Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072

    PubMed  CAS  Google Scholar 

  • Xu F, Ackerley C, Maj MC et al (2008) Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. Biochem J 416:15–26

    PubMed  CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Törnroth S et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Tsukihara T (1998) Crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution. J Bioenerg Biomembr 30:7–14

    PubMed  CAS  Google Scholar 

  • Zara V, Conte L, Trumpower BL (2007) Identification and characterization of cytochrome bc(1) subcomplexes in mitochondria from yeast with single and double deletions of genes encoding cytochrome bc(1) subunits. FEBS J 274:4526–4539

    PubMed  CAS  Google Scholar 

  • Zara V, Conte L, Trumpower BL (2009) Biogenesis of the yeast cytochrome bc(1) complex. Biochim Biophys Acta 1793:89–96

    PubMed  CAS  Google Scholar 

  • Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Telethon-Italy (grants GGP11011 and GPP10005 to MZ), Fondazione CARIPLO (grant 2011/0526), the Italian Association of Mitochondrial Disease Patients and Families (Mitocon) and Fondazione Pierfranco e Luisa Mariani (Ricerca 2000 grant to MZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zeviani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghezzi, D., Zeviani, M. (2012). Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_4

Download citation

Publish with us

Policies and ethics