Skip to main content

History of Neural Simulation Software

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

This chapter provides a brief history of the development of software for simulating biologically realistic neurons and their networks, beginning with the pioneering work of Hodgkin and Huxley and others who developed the computational models and tools that are used today. I also present a personal and subjective view of some of the issues that came up during the development of GENESIS, NEURON, and other general platforms for neural simulation. This is with the hope that developers and users of the next generation of simulators can learn from some of the good and bad design elements of the last generation. New simulator architectures such as GENESIS 3 allow the use of standard well-supported external modules or specialized tools for neural modeling that are implemented independently from the means of the running the model simulation. This allows not only sharing of models but also sharing of research tools. Other promising recent developments during the past few years include standard simulator-independent declarative representations for neural models, the use of modern scripting languages such as Python in place of simulator-specific ones and the increasing use of open-source software solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alben R, Kirkpatrick S, Beeman D (1977) Spin waves in random ferromagnets. Phys Rev B15:346

    Google Scholar 

  • Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5:285–314

    Article  PubMed  CAS  Google Scholar 

  • Beeman D (1994) Simulation-based tutorials for education in computational neuroscience. In: Eeckman FH (ed) Computation in neurons and neural systems. Kluwer Academic, Norwell, MA, pp 65–70

    Chapter  Google Scholar 

  • Beeman D, Boswell J (1977) Computer graphics and electromagnetic fields. Am J Phys 45:213

    Article  Google Scholar 

  • Beeman D, Bower JM (2004) Simulator-independent representation of ionic conductance models with ChannelDB. Neurocomputing 58–60:1085–1090

    Article  Google Scholar 

  • Beeman D, Bower JM, De Schutter E, Efthimiadis EN, Goddard N, Leigh J (1997) The GENESIS simulator-based neuronal database (chap 4). In: Koslow SH, Huerta MF (eds) Neuroinformatics: an overview of the human brain project. Lawrence Erlbaum Associates, Mahwah, NJ, pp 57–80

    Google Scholar 

  • Bhalla US (1998) Advanced XODUS techniques (chap 22). In: Bower JM, Beeman D (eds) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System, 2nd edn. Springer, New York, pp 381–405

    Google Scholar 

  • Bhalla US (2000) Modeling networks of signaling pathways (chap 2). In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, FL, pp 25–48

    Google Scholar 

  • Bhalla US (2003) Managing models of signalling networks. Neurocomputing 52–54:215–220

    Article  Google Scholar 

  • Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948–1965

    PubMed  CAS  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Bilitch DH, Bower JM (1992) Rallpacks: a set of benchmarks for neuronal simulators. Trends Neurosci 15:453–458

    Article  PubMed  CAS  Google Scholar 

  • Blackwell KT (2000) Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. J Comput Neurosci 9:149–170

    Article  PubMed  CAS  Google Scholar 

  • Borg-Graham LJ (2000) Additional efficient computation of branched nerve equations: adaptive time step and ideal voltage clamp. J Comput Neurosci 8:209–226

    Article  PubMed  CAS  Google Scholar 

  • Bower JM (1991) Relations between the dynamical properties of single cells and their networks in piriform (olfactory) cortex. In: McKenna T, Davis J, Zornetzer S (eds) Single neuron computation. Academic, San Diego, pp 437–462

    Google Scholar 

  • Bower JM (1992) Modeling the nervous system. Trends Neurosci 15:411–412

    Article  Google Scholar 

  • Bower JM (2005) Looking for Newton: realistic modeling in modern biology. Brains Minds Media 1:bmm217 (urn:nbn:de:0009-3-2177)

    Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System, 2nd edn. Springer, New York, http://www.genesis-sim.org/GENESIS/bog/bog.html

  • Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398. doi:10.1007/s10827-007-0038-6

    Article  PubMed  Google Scholar 

  • Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 66:2107–2124

    PubMed  CAS  Google Scholar 

  • Carenvale NT, Woolfe TB, Shepherd GM (1990) Neuron simulations with SABER. J Neurosci Methods 33:135–148

    Article  Google Scholar 

  • Cole K (1968) Membranes, ions, and impulses: a chapter of classical biophysics. University of California Press, Berkeley

    Google Scholar 

  • Connor JA, Stevens CF (1971) Prediction of repetitive firing behavior from voltage clamp data on an isolated neurone soma. J Physiol 213:31–53

    PubMed  CAS  Google Scholar 

  • Cornelis H, De Schutter E (2003) Neurospaces: separating modeling and simulation. Neurocomputing 52–54:227–231. doi:10.1016/S0925-2312(02)00750-6

    Article  Google Scholar 

  • Cornelis H, Coop AD, Bower JM (2010) Development of model-based publication for scientific communication. BMC Neurosci 11(suppl 1):P69. doi:10.1186/1471-2202-11-S1-P69

    Article  Google Scholar 

  • Cornelis H, Coop AD, Bower JM (2012a) A federated design for a neurobiological simulation engine: the CBI federated software architecture. PLoS One 7:e28956. doi:10.1371/journal.pone.0028956

    Article  PubMed  CAS  Google Scholar 

  • Cornelis H, Rodriguez AL, Coop AD, Bower JM (2012b) Python as a federation tool for GENESIS 3.0. PLoS One 2:e29018

    Article  Google Scholar 

  • Crook S, Gleeson P, Howell F, Svitak J, Silver R (2007) MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5:96–104. doi:10.1007/s12021-007-0003-6

    Article  PubMed  Google Scholar 

  • Crook S, Davison AP, Plesser HE (2013) Learning from the past: approaches for reproducibility in computational neuroscience. In: Bower JM (ed) 20 Years of computational neuroscience. Springer, New York

    Google Scholar 

  • Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2009) PyNN: a common interface for neuronal network simulators. Front Neuroinform 2:11. doi:10.3389/neuro.11.011.2008

    Google Scholar 

  • De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Boston, pp 211–250

    Google Scholar 

  • Djurfeldt M, Johansson C, Ekeberg Ö, Rehn M, Lundqvist M, Lansner A (2005) Massively parallel simulation of brain-scale neuronal network models. Tech. Rep. QC 20100709. KTH, School of Computer Science and Communication (CSC), oai:DiVA.org:kth-10606

    Google Scholar 

  • Djurfeldt M, Hjorth J, Eppler J, Dudani N, Helias M, Potjans T, Bhalla U, Diesmann M, Hellgren Kotaleski J, Ekeberg Ö (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8:43–60. doi:10.1007/s12021-010-9064-z

    Article  PubMed  Google Scholar 

  • Dodge FA, Cooley JW (1973) Action potential of the motor neuron. IBM J Res Dev 17:219–229

    Article  Google Scholar 

  • Drewes RP, Zou Q, Goodman PH (2009) Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the neocortical simulator. Front Neuroinform 3:16. doi:10.3389/neuro.11.016.2009

    Article  PubMed  Google Scholar 

  • Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: a convenient interface to the NEST simulator. Front Neuroinform 2:12. doi:10.3389/neuro.11.012.2008

    Article  PubMed  Google Scholar 

  • Ermentrout B (2006) XPPAUT. Scholarpedia 1(10):1399. doi:10.4249/scholarpedia.1399

    Google Scholar 

  • Forss J, Beeman D, Bower JM, Eichler West RM (1999) The modeler’s workspace: a distributed digital library for neuroscience. Future Gener Comp Syst 16:111–121

    Article  Google Scholar 

  • Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner E (2001) Common data model for neuroscience data and data model interchange. J Am Med Inform Assoc 8:17–33

    Article  PubMed  CAS  Google Scholar 

  • Getting PA (1989) Reconstruction of small neural networks (chap 6). In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, MA, pp 171–194

    Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroconstruct: a tool for modeling networks of neurons in 3d space. Neuron 54:219–235

    Article  PubMed  CAS  Google Scholar 

  • Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks. PLoS Comput Biol 6(6):e1000–e1815. doi:10.1371/journal.pcbi.1000815

    Article  Google Scholar 

  • Goddard NH, Lynne KJ, Mintz T (1987) Rochester connectionist simulator. Tech. Rep. ADA191483. Department of Computer Science, University of Rochester

    Google Scholar 

  • Goddard NH, Hood G, Howell FW, Hines ML, De Schutter E (2001a) NEOSIM: portable large-­scale plug and play modelling. Neurocomputing 38–40:1657–1661. doi:10.1016/S0925-2312(01)00528-8

    Article  Google Scholar 

  • Goddard NH, Hucha M, Howell F, Cornelis H, Shankar K, Beeman D (2001b) Towards NeuroML: model description methods for collaborative modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356:1209–1228. doi:10.1098/rstb.2001.0910

    Article  PubMed  CAS  Google Scholar 

  • Goodman DFM, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinform 2:5. doi:10.3389/neuro.11.005.2008

    Article  PubMed  Google Scholar 

  • Gorchetchnikov A, The INCF Multiscale Modeling Taskforce (2010) Nineml: a description language for spiking neuron network modeling: the user layer. BMC Neurosci 11(suppl 1):P71. doi:10.1186/1471-2202-11-S1-P71

    Article  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund P, Ekeberg Ö (1998) Large neural network simulations on multiple hardware platforms. J Comput Neurosci 5:443–459. doi:10.1023/A:1008893429695

    Article  PubMed  CAS  Google Scholar 

  • Hartree DR (1932) A practical method for the numerical solution of differential equations. Mem Manchester Lit Phil Soc 77:91–107

    Google Scholar 

  • Hines M (1984) Efficient computation of branched nerve equations. Int J Biomed Comput 15:69–79

    Article  PubMed  CAS  Google Scholar 

  • Hines M (1989) A program for the simulation of nerve equations with branching geometries. Int J Biomed Comput 24:55–68

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput 12:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Hines M, Davison AP, Muller E (2009) NEURON and Python. Front Neuroinform 3:1. doi:10.3389/neuro.11.001.2009

    Article  PubMed  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554

    Article  PubMed  CAS  Google Scholar 

  • Hucka M, Shankar K, Beeman D, Bower JM (2002) The Modeler’s workspace: making model-­based studies of the nervous system more accessible (chap 5). In: Ascoli G (ed) Computational neuroanatomy: principles and methods. Humana Press, Totowa, NJ, pp 83–115

    Chapter  Google Scholar 

  • Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  • Kernigan BW, Pike R (1984) The Unix programming environment. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Kernighan B, Ritchie D (1978) The C programming language. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Kohn MC, Hines ML, Kootsey JM, Feezor MD (1989) A block organized model builder. Math Comp Mod 19:75–97

    Article  Google Scholar 

  • Koslow SH, Huerta MF (eds) (1997) Neuroinformatics: an overview of the human brain project. Vol: Progress in neuroinformatics research series. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  • Loomis ME (1995) Object databases—the essentials. Addison-Wesley, Reading, MA

    Google Scholar 

  • Maley N, Beeman D, Lannin JS (1988) Dynamics of tetrahedral networks: amorphous Si and Ge. Phys Rev B38:10,611

    Google Scholar 

  • Mcullough WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1:135–139. doi:10.1385/NI:1:1:135

    Article  PubMed  Google Scholar 

  • Nelson M, Rinzel J (1998) The Hodgkin-Huxley model (chap 4). In: Bower JM, Beeman D (eds) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System, 2nd edn. Springer, New York, pp 29–49

    Google Scholar 

  • Nelson M, Furmanski W, Bower JM (1989) Simulating neurons and neuronal networks on parallel computers (chap 12). In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, MA, pp 397–438

    Google Scholar 

  • Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3:11. doi:10.3389/neuro.11.011.200

    Article  PubMed  Google Scholar 

  • Pellionisz A, Llinás R, Perkel DH (1977) A computer model of the cerebellar cortex of the frog. Neuroscience 2:19–35

    Article  PubMed  CAS  Google Scholar 

  • Perkel DH, Watt JH (1981) A manual for MANUEL. Stanford University Press, Stanford CA

    Google Scholar 

  • Raikov I, INCF Multiscale Modeling Taskforce (2010) NineML: a description language for spiking neuron network modeling: the abstraction layer. BMC Neurosci 11(suppl 1):P66. doi:10.1186/1471-2202-11-S1-P66

    Article  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1962a) Electrophysiology of a dendritic neuron model. Biophys J 2:145–167

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1962b) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96:1071–1092

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic tress for neuronal input–output relations. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, Stanford CA, pp 73–97

    Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-­dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  • Rall W, Agmon-Smir H (1998) Cable theory for dendritic neurons (chap 2). In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Boston, pp 27–92

    Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interaction in olfactory bulb. J Neurophysiol 31:884–915

    PubMed  CAS  Google Scholar 

  • Ray S, Bhalla US (2008) PyMOOSE: interoperable scripting in Python for MOOSE. Front Neuroinform 2:6. doi:10.3389/neuro.11.006.2008

    PubMed  Google Scholar 

  • Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19

    Article  PubMed  Google Scholar 

  • Rinzel J (1990) Electrical excitability of cells, theory and experiment: review of the Hodgkin-­Huxley foundation and an update. Bull Math Biol 52:5–23

    Article  Google Scholar 

  • Rochel O, Martinez D (2003) An event-driven framework for the simulation of networks of spiking neurons. In: ESANN-2003, Bruges, Belgium, pp 295–300

    Google Scholar 

  • Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell: induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248–263. doi:10.1152/jn.01098.2005, http://jn.physiology.org/content/97/1/248.full.pdf+html

    Article  PubMed  Google Scholar 

  • Sasaki K, Bower JM, Llinás R (1989) Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci 1:572–586

    Article  PubMed  Google Scholar 

  • Segev I, Fleshman JW, Miller JP, Bunow B (1985) Modeling the electrical behaviour of anatomically complex neurons using a network analysis program: passive membrane. Biol Cybern 53:27–40

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Brayton RK (1979) Computer simulation of a dendro-dendritic synapse circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res 175:377–382

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GH, Healy MD, Singer MS, Peterson BE, Mirsky JS, Wright L, Smith JE, Nadkarni P, Miller PL (1997) SenseLab: a project in multidisciplinary, multilevel sensory integration (chap 3). In: Koslow SH, Huerta MF (eds) Neuroinformatics: an overview of the human brain project. Lawrence Erlbaum, Mahwah, NJ, pp 21–56

    Google Scholar 

  • Spacek MA, Blanche T, Swindale N (2009) Python for large-scale electrophysiology. Front Neuroinform 2:1. doi:10.3389/neuro.11.009.2008

    Google Scholar 

  • Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: Schutter ED (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127

    Google Scholar 

  • Thorpe MF, Beeman D (1976) Thermodynamics of an Ising model with random exchange interactions. Phys Rev B14:188

    Google Scholar 

  • Traub R (1977) Motor neurons of different geometry and the size principle. Biol Cybern 25:163–176

    Article  PubMed  CAS  Google Scholar 

  • Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience 7:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Llinás R (1979) Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 42:476–496

    PubMed  CAS  Google Scholar 

  • Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    PubMed  CAS  Google Scholar 

  • Traub RD, Jeffereys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol (London) 481:79–95

    CAS  Google Scholar 

  • Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7:149–171

    Article  PubMed  CAS  Google Scholar 

  • Weitzenfeld A (1995) NSL—neural simulation language. In: Arbib MA (ed) The handbook of brain theory and neural networks, 1st edn. Bradford Books/MIT Press, Cambridge, pp 654–658

    Google Scholar 

  • Wilson MA, Bower JM (1989) The simulation of large scale neural networks (chap 9). In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, MA, pp 291–333

    Google Scholar 

  • Wilson M, Bower JM (1991) A computer simulation of oscillatory behavior in primary visual cortex. Neural Comput 3:498–509

    Article  Google Scholar 

  • Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol 67:981–995

    PubMed  CAS  Google Scholar 

  • Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural networks. In: Touretzky D (ed) Advances in neural information processing systems. Morgan Kauffman, San Mateo, CA, pp 485–492

    Google Scholar 

Download references

Acknowledgment

The author acknowledges support from the National Institutes of Health under grant R01 NS049288-06S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Beeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beeman, D. (2013). History of Neural Simulation Software. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_3

Download citation

Publish with us

Policies and ethics