Skip to main content

Rod Photoreceptor Temporal Properties in Retinal Degenerative Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Using paired-flash electroretinogram (ERG), our goal was to determine whether the inactivation of rod phototransduction is altered in patients with Retinal Degenerative Diseases (RDDs). The rod photoresponses were derived from 18 patients with autosomal dominant retinitis pigmentosa (adRP) (n = 18), 5 patients with cone–rod dystrophy (CRD), and 4 patients with Stargardt disease. Thirteen subjects with normal eye exams served as controls. T sat, the parameter describing phototransduction inactivation, was derived using the paired-flash ERG protocol. Rod a-wave recovery initiates at 544 ± 92 ms (mean ± SD) after a just-saturating test flash in subjects with normal vision. For patients with RDDs, the rod a-wave recovery initiates at 331 ± 99 ms (autosomal dominant RP, P < 0.001, t-test), 473 ± 113 ms (CRD, P = 0.26, t-test), and 491 ± 98 ms (Stargardt disease, P = 0.38, t-test). Thus patients with adRP show earlier-than-normal photoresponse recovery, while patients with CRD or Stargardt disease typically have T sat values within the normal range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allikmets R, Shroyer NF, Singh N et al (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Singh N, Sun H et al (1997b) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  • Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Birch DG, Hood DC, Nusinowitz S et al (1995) Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Invest Ophthalmol Vis Sci 36:1603–1614

    PubMed  CAS  Google Scholar 

  • Chen CK, Burns ME, He W et al (2000) Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403:557–560

    Article  PubMed  CAS  Google Scholar 

  • Fishman GA (1976) Progressive human cone-rod dysfunction (dystrophy). Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP716–724

    Google Scholar 

  • Fishman GA (2010) Historical evolution in the understanding of Stargardt macular dystrophy. Ophthalmic Genet 31:183–189

    Article  PubMed  Google Scholar 

  • Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271

    Article  PubMed  CAS  Google Scholar 

  • He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20:95–102

    Article  PubMed  Google Scholar 

  • Jiang L, Wheaton D, Bereta G et al (2008) A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Res 48:2425–2432

    Article  PubMed  CAS  Google Scholar 

  • Koenekoop RK (2009) Why do cone photoreceptors die in rod-specific forms of retinal degenerations? Ophthalmic Genet 30:152–154

    Article  PubMed  CAS  Google Scholar 

  • Kraft TW, Allen D, Petters RM et al (2005) Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis 11:1246–1256

    PubMed  CAS  Google Scholar 

  • Kraft TW, Sandoval IM, Boye SL et al (2006) Dramatically altered rod responses in rat retina overexpressing R9AP and RGS9-1. In: Society for Neuroscience Atlanta, GA

    Google Scholar 

  • Krispel CM, Chen D, Melling N et al (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416

    Article  PubMed  CAS  Google Scholar 

  • Liebman PA, Jagger WS, Kaplan MW et al (1974) Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251:31–36

    Article  PubMed  CAS  Google Scholar 

  • Marmor MF, Fulton AB, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretino­graphy (2008 update). Doc Ophthalmol 118:69–77

    Article  PubMed  CAS  Google Scholar 

  • Niculescu DM (2004) Physiological Characterization of the Light Response of Rod Photoreceptors in the Dystrophic Royal College of Surgeons Rat. In: Physiological Optics Birmingham, AL: University of Alabama at Birmingham

    Google Scholar 

  • Pepperberg DR, Birch DG, Hood DC (1997) Photoresponses of human rods in vivo derived from paired-flash electroretinograms. Vis Neurosci 14:73–82

    Article  PubMed  CAS  Google Scholar 

  • Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970

    Article  PubMed  CAS  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    Article  PubMed  CAS  Google Scholar 

  • Tsang SH, Woodruff ML, Janisch KM et al (2007) Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response. J Physiol 579:303–312

    Article  PubMed  CAS  Google Scholar 

  • Wen Y (2008) Physiological Characterization of the Light Response of Rod Photoreceptors in the Light Damaged Rat. In: Neurobiology Birmingham, Alabama: University of Alabama at Birmingham

    Google Scholar 

  • Wen Y, Kraft TW (2008) Altered Light Response of Rod Photoreceptors Surviving Light Damage. In: ARVO 2008 Annual Meeting Fort Lauderdale, Florida, USA

    Google Scholar 

  • Wen Y, Niculescu DM, Kraft TW (2006) Desensitization of retinal photoreceptors during disease: not a story of equivalent light. In: Society for Neuroscience Atlanta, GA

    Google Scholar 

  • Wen Y, Locke KL, Hood DC, Birch DG (2011) Rod photoreceptor temporal properties in retinitis pigmentosa. Exp Eye Res 92(3):202–208

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Dianna Hughbanks-Wheaton and Kaylie Clark at the Southwest Eye Registry and the Daiger lab at UT Houston for coordinating and performing genetic testing. This investigation was supported by US National Institutes of Health grant (NEI R01 09076) to D.G.B and D.C.H. and the Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuquan Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Wen, Y., Locke, K.G., Hood, D.C., Birch, D.G. (2012). Rod Photoreceptor Temporal Properties in Retinal Degenerative Diseases. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_62

Download citation

Publish with us

Policies and ethics