Skip to main content

Alpha and Theta Rhythm Abnormality in Alzheimer’s Disease: A Study Using a Computational Model

  • Conference paper
From Brains to Systems

Abstract

Electroencephalography (EEG) studies in Alzheimer’s Disease (AD) patients show an attenuation of average power within the alpha band (7.5–13 Hz) and an increase of power in the theta band (4–7 Hz). Significant body of evidence suggest that thalamocortical circuitry underpin the generation and modulation of alpha and theta rhythms. The research presented in this chapter is aimed at gaining a better understanding of the neuronal mechanisms underlying EEG band power changes in AD which may in the future provide useful biomarkers towards early detection of the disease and for neuropharmaceutical investigations. The study is based on a classic computational model of the thalamocortical circuitry which exhibits oscillation within the theta and the alpha bands. We are interested in the change in model oscillatory behaviour corresponding with changes in the connectivity parameters in the thalamocortical as well as sensory input pathways. The synaptic organisation as well as the connectivity parameter values in the model are modified based on recent experimental data from the cat thalamus. We observe that the inhibitory population in the model plays a crucial role in mediating the oscillatory behaviour of the model output. Further, increase in connectivity parameters in the afferent and efferent pathways of the inhibitory population induces a slowing of the output power spectra. These observations may have implications for extending the model for further AD research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Neurons that use Acetylcholine (ACh) as the synaptic neurotransmitter are called cholinergic neurons, while the synapse is called a cholinergic synapse (see [23] for a review).

  2. 2.

    Alpha Rhythms are dominant in cortical EEG while a subject is in a relaxed but awake state with eyes closed and thus corresponds to a lack of visual representation from the external world.

  3. 3.

    The set of varying values for each connectivity parameter are different and over a smaller range compared to that in ARm. Preliminary investigation over smaller parameter ranges with ARm are reported elsewhere [4, 6].

References

  1. Basar, E., Guntekin, B.: A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res. 1235, 172–193 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. Basar, E., Schurmann, M., Basar-Eroglu, C., Karakas, S.: Alpha oscillations in brain functioning: an integrative theory. Int. J. Psychophysiol. 26, 5–29 (1997)

    Article  PubMed  CAS  Google Scholar 

  3. Bennys, K., Rondouin, G., Vergnes, C., Touchon, J.: Diagnostic value of quantitative EEG in Azheimer’s Disease. Clin. Neurophysiol. 31, 153–160 (2001)

    Article  CAS  Google Scholar 

  4. Bhattacharya, B.S., Coyle, D., Maguire, L.P.: A computational modelling approach to investigate alpha rhythm slowing associated with Alzheimer’s Disease. In: Proceedings of the Conference on Brain Inspired Cognitive Systems (BICS), Madrid, Spain, pp. 382–392 (2010)

    Google Scholar 

  5. Bhattacharya, B.S., Coyle, D., Maguire, L.P.: Intra- and inter-connectivity influences on event related changes in thalamocortical alpha rhythms. In: Proceedings of the conference on Biologically-Inspired Computation: Theories and Applications (BIC-TA), Liverpool, United Kingdom, pp. 1685–1692 (2010). ISBN 978-1-4244-6439-5

    Google Scholar 

  6. Bhattacharya, B.S., Coyle, D., Maguire, L.P.: Thalamocortical circuitry and alpha rhythm slowing: an empirical study based on a classic computational model. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, pp. 3912–3918 (2010)

    Google Scholar 

  7. Brenner, R.P., Reynolds, C.F., Ulrich, R.F.: Diagnostic efficacy of computerized spectral versus visual EEG analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 69, 110–117 (1988)

    Article  PubMed  CAS  Google Scholar 

  8. Brenner, R.P., Reynolds, C.F., Ulrich, R.F.: EEG findings in depressive pseudodementia and dementia with secondary depression. Electroencephalogr. Clin. Neurophysiol. 72, 298–304 (1989)

    Article  PubMed  CAS  Google Scholar 

  9. Brenner, R.P., Ulrich, R.F., Spiker, D.G., Sclabassi, R.J., Reynolds, C.F., Marin, R.S., Boller, F.: Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 64, 483–492 (1986)

    Article  PubMed  CAS  Google Scholar 

  10. Cantero, J.L., Atienza, M., Gomez-Herrero, G., Cruz-Vadell, A., Gil-Neciga, E., Rodriguez-Romero, R., Garcia-Solis, D.: Functional integrity of thalamocortical circuits differentiates normal ageing from mild cognitive impairment. Hum. Brain Mapp. 30, 3944–3957 (2009)

    Article  PubMed  Google Scholar 

  11. Stam, C.J., Pijn, J.P.M., Suffczyński, P., da Silva, F.H.L.: Dynamics of the human alpha rhythm: evidence for non-linearity? Clin. Neurophysiol. 110, 1801–1813 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. Cummings, J.L., Vinters, H.V., Cole, G.M., Khachaturian, Z.S.: Alzheimer’s Disease: Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(Suppl 1), 2–17 (1998)

    Google Scholar 

  13. Siemers, E.M.: Advances in biomarkers and modelling for the development of improved therapeutics: early Alzheimer’s treatment. Abstract of talk at: 1st International Congress on Alzheimer’s Disease and Advanced Neurotechnologies (2010)

    Google Scholar 

  14. Geula, C.: Abnormalities of neural circuitry in Alzheimer’s Disease. Neurology 51(Suppl 1), 18–29 (1998)

    Google Scholar 

  15. Hogan, M., Swanwick, G.R.J., Kaiser, J., Rowan, M., Lawlor, B.: Memory-related EEG power and coherence reductions in mild Alzheimer’s Disease. Int. J. Psychophysiol. 49, 147–163 (2003)

    Article  PubMed  Google Scholar 

  16. Hughes, S.W., Crunelli, V.: Thalamocortical mechanisms in EEG alpha rhythms and their pathological implications. The Neuroscientist 11(4), 357–372 (2005)

    Article  PubMed  Google Scholar 

  17. Hughes, S.W., Lorincz, M., Cope, D.W., Blethyn, K.L., Kekesi, K.A., Parri, H.R., Juhasz, G., Crunelli, V.: Synchronised oscillations at α and θ frequencies in the Lateral Geniculate Nucleus. Neuron 42, 253–268 (2004)

    Article  PubMed  CAS  Google Scholar 

  18. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105(9), 3593–3598 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. Jeong, J.: EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115, 1490–1505 (2004)

    Article  PubMed  Google Scholar 

  20. Jones, E.G.: The Thalamus, Vols. I and II, 1st edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  21. Kim, U., Sanchez-Vives, M.V., McCormick, D.A.: Functional dynamics of gabaergic inhibition in the thalamus. Science 278, 130–134 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)

    Article  PubMed  CAS  Google Scholar 

  23. McCormick, D.A.: Acetylcholine: distribution, receptors, and action, pp. 91–101 (1989)

    Google Scholar 

  24. McCormick, D.A., Bal, T.: Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. Montez, T., Poil, S.S., Jones, B.F., Manshanden, I., Verbunt, J.P., van Dijk, B.W., Brussaard, A.B., van Ooyen, A., Stam, C.J., Scheltens, P., Linkenkaer-Hansen, K.: Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 106(5), 1614–1619 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. Niedermeyer, E.: Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. 26, 31–49 (1997)

    Article  PubMed  CAS  Google Scholar 

  27. Prinz, P.N., Vitiello, M.V.: Dominant occipital (alpha) rhythm frequency in early stage Alzheimer’s Disease and depression. Electroencephalogr. Clin. Neurophysiol. 73, 427–432 (1989)

    Article  PubMed  CAS  Google Scholar 

  28. Raji, C.A., Lopez, O.L., Kuller, L.H., Carmichael, O.T., Becker, J.T.: Age, Alzheimer Disease, and brain structure. Neurology 73, 1899–1905 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. Rodrigues, S., Chizhov, A.V., Marten, F., Terry, J.R.: Mappings between a macroscopic neural-mass model and a reduced conductance-based model. NeuroImage 102, 361–371 (2010)

    Google Scholar 

  30. Romei, V., et al.: On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J. Neurosci. 30, 8692–8697 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. Schreckenberger, M., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T., Buchholz, H.-G., Bartenstein, P., Gründer, G.: The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage 22(2), 637–644 (2004)

    Article  PubMed  Google Scholar 

  32. Sherman, S.M.: Thalamus. Scholarpedia 1(9), 1583 (2006)

    Article  Google Scholar 

  33. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus, 1st edn. Academic Press, New York (2001)

    Google Scholar 

  34. da Silva, F.H.L.: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79, 81–93 (1991)

    Article  Google Scholar 

  35. da Silva, F.H.L., van Lierop, T.H.M.T., Schrijer, C.F., van Leeuwen, W.S.: Essential differences between alpha rhythms and barbiturate spindles: spectra and thalamo-cortical coherences. Electroencephalogr. Clin. Neurophysiol. 35, 641–645 (1973)

    Article  PubMed  Google Scholar 

  36. Soininen, H., Reinikainen, K., Partanen, J., Helkala, E.-L., Paljärvi, L., Riekkinen, P. Sr.: Slowing of electroencephalogram and choline acetyltransferase activity in post mortem frontal cortex in definite Alzheimer’s Disease. Neuroscience 49(3), 529–535 (1992)

    Article  PubMed  CAS  Google Scholar 

  37. Soininen, H., Reinikainen, K., Partanen, J., Mervaala, E., Paljarvi, L., Helkala, E.-L., Riekkinen, P. Sr.: Slowing of the dominant occipital rhythm in electroencephalogram is associated with low concentration of noradrenaline in the thalamus in patients with Alzheimer’s disease. Neurosci. Lett. 137, 5–8 (1992)

    Article  PubMed  CAS  Google Scholar 

  38. Stam, C.J.: Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J. Neurolog. Sci. 289, 128–134 (2010)

    Article  CAS  Google Scholar 

  39. Suffczyński, P.: Neural dynamics underlying brain thalamic oscillations investigated with computational models. Ph.D. thesis, Institute of Experimental Physics, University of Warsaw (October 2000)

    Google Scholar 

  40. Suffczyński, P., et al.: Event-related dynamics of alpha rhythms: a neuronal network model of focal ERD/surround ERS. In: Pfurtscheller, G., da Silva, F.H.L. (eds.) Handbook of Electroencephalography and Clinical Neurophysiology, Revised series, pp. 67–85. Elsevier, Amsterdam (1999)

    Google Scholar 

  41. Tombol, T.: Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3, 307–326 (1967)

    Article  PubMed  CAS  Google Scholar 

  42. Tourtellotte, W.G., Hoesen, G.W.V., Hyman, B.T., Tikoo, R.K., Damasio, A.R.: Afferents of the thalamic reticular nucleus are pathologically altered in Alzheimer’s Disease. J. Neuropathol. Exp. Neurol. 48(3), 336 (1989)

    Article  Google Scholar 

  43. Uhlhaas, P.J., Pantel, J., Lanfermann, H., Prvulovic, D., Haenschel, C., Maurer, K., Linden, D.E.J.: Visual perceptual organization deficits in Alzheimer’s dementia. Dement. Geriatr. Cogn. Disord. 25(5), 465–475 (2008)

    Article  PubMed  Google Scholar 

  44. Ursino, M., Cona, F., Zavaglia, M.: The generation of rhythms within a cortical region: Analysis of a neural mass model. NeuroImage 52(3), 1080–1094 (2010)

    Article  PubMed  Google Scholar 

  45. Wada, Y., Nanbu, Y., Jiang, Z.-Y., Koshino, Y., Yamaguchi, N., Hashimoto, T.: Electroencephalographic abnormalities in patients with presenile dementia of the Alzheimer type: quantitative analysis at rest and during photic stimulation. Biol. Psychiatry 41, 217–225 (1997)

    Article  PubMed  CAS  Google Scholar 

  46. Waugh, W.H.: A call to reduce the incidence of Alzheimer’s Disease. J. Appl. Res. 10(2), 53–57 (2010)

    Google Scholar 

  47. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interaction in localized populations of model neurons. J. Biophys. 12, 1–23 (1972)

    Article  CAS  Google Scholar 

  48. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  PubMed  CAS  Google Scholar 

  49. Zetterberg, L.H., Kristiansson, L., Mossberg, K.: Performance of a model for a local neuron population. Biol. Cybern. 31, 15–26 (1978)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Northern Ireland Department for Education and Learning under the Strengthening the All Island Research Base programme. B. Sen Bhattacharya would like to thank Dr. David Watson for valuable comments and suggestions on the work and several useful discussions from time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basabdatta Sen Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Bhattacharya, B.S., Coyle, D., Maguire, L.P. (2011). Alpha and Theta Rhythm Abnormality in Alzheimer’s Disease: A Study Using a Computational Model. In: Hernández, C., et al. From Brains to Systems. Advances in Experimental Medicine and Biology, vol 718. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0164-3_6

Download citation

Publish with us

Policies and ethics