Skip to main content

Augmented Reality for Nano Manipulation

  • Chapter
  • First Online:
Handbook of Augmented Reality
  • 11k Accesses

Abstract

In recent research in nano and micro world, the Atomic Force Microscope (AFM) [1] plays more and more important role because of high resolution image [2] and vacuum free working environment. With the help of AFM, it makes people more convenience to get high quality live cell or fixed cell image [3]. The AFM also has the ability to test and measure the mechanical characteristic of sample such as force curve, Young’s modulus and roughness [3, 4], therefore, some researchers [4–6] focus on the subject of measuring the mechanical property of living cell or using functionalized tip to stimulate the cell by means of electric or chemical solution [7–9]. The vacuum free working environment makes AFM much more flexible in various working conditions both in air and liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binning, C. F. Quate, and C. Gerber. “Atomic force microscope”, Physical Review Letters, vol. 56–9, 1986, pp. 930–933.

    Article  Google Scholar 

  2. D. M. Schaefer, R. Reifenberger, A. Patil and R. P. Andres. “Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope”. Applied Physics Letters, vol. 66, 1995, pp. 1012–1014.

    Article  Google Scholar 

  3. R. Yang, et al., “Analysis of keratinocytes stiffness after desmosome disruption using Atomic Force Microscopy based nanomanipulation,” IEEE Int. Conf. Nanotechnology, Genoa, Italy, July 2009.

    Google Scholar 

  4. C. Fung, N. Xi, R. Yang, K. Seiffert-Sinha, K. Lai and A. Sinha, “Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM),” IEEE Trans on Nanobioscience, vol. 10, 2011, pp. 9–15.

    Article  Google Scholar 

  5. N. Xi, C. Fung, R. Yang, K. Seiffert-Sinha, K. Lai and A. Sinha, “Bionanomanipulation using atomic force microscopy,” IEEE Nanotechnology Magazine, vol. 4, 2010, pp. 9–12.

    Article  Google Scholar 

  6. R. Yang, N. Xi, C. Fung, K. Seiffert-Sinha, K. Lai and A. Sinha, “The emergence of AFM applications to cell biology: how new technologies are facilitating investigation of human cells in health and disease at the nanoscale,” Journal of Nanoscience Letters, vol. 1, 2011, pp. 81–101.

    Article  Google Scholar 

  7. R. Yang, N. Xi, K. Lai, B. Zhong, C. Fung, C. Qu and D. Wang, “Nanomechanical analysis of insulinoma cells after glucose and capsaicin stimulation using atomic force microscopy,” Acta Pharmacologica Sinica, vol. 32, 2011, pp. 853–860.

    Article  Google Scholar 

  8. A. Engel and D. J. Müller, “Observing single biomolecules at work with the atomic force microscope,” Nat. Struct. Biol., vol. 7, no. 9, 2000, pp. 715–718.

    Article  Google Scholar 

  9. J. K. H. Hörber and M. J. Miles, “Scanning probe evolution in biology,” Science, vol. 302, no. 5647, 2003, pp. 1002–1005.

    Article  Google Scholar 

  10. Y. F. Dufrêne, “Using nanotechniques to explore microbial surfaces,” Nat. Rev. Microbiol., vol. 2, no. 6, 2004, pp. 451–460.

    Article  Google Scholar 

  11. A. Pelling, F. Veraitch, C. Chu, C. Mason and M. Horton, “Mechanical dynamics of single cells during early apoptosis,” Cell motility and the cytoskeleton, vol. 646, 2009, pp. 409–422.

    Article  Google Scholar 

  12. C. K. M. Fung, K. Seiffert-Sinha, et al., “Investigation of human keratinocyte cell adhesion using atomic force microscopy.” Nanomedicine-Nanotechnology Biology and Medicine vol. 6(1), 2010, pp. 191–200.

    Article  Google Scholar 

  13. DE. Discher, N. Mohandas, EA. Evans “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science, vol. 266–5187, 1994, pp. 1032–1035.

    Google Scholar 

  14. J. Stroscio and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope,” Science, vol. 254, no. 5036, Nov, 1991, pp. 1319–1326.

    Google Scholar 

  15. G. Li, N. Xi, and D. H. Wang, “In situ sensing and manipulation of molecules in biological samples using a nano robotic system,” Nanomedicine, vol. 1, no. 1, 2005, pp. 31–40.

    Article  Google Scholar 

  16. G. Li, N. Xi, M. Yu, and W. Feng, “Development of augmented reality system for AFM-based nanomanipulation,” Mechatronics, IEEE/ASME Transactions on Mechatronics, vol. 9, 2004, pp. 358–365.

    Article  Google Scholar 

  17. D.J. Muller and Yves F. Dufrene, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol, vol. 3, May 2008, pp. 261–269.

    Google Scholar 

  18. L. Liu, N. Xi, Y. Luo, J. Zhang, G. Li, “Sensor referenced guidance and control for robotic nanomanipulation,” IEEE International Conference on Intelligent Robots and Systems, 2007, pp. 578–583.

    Google Scholar 

  19. G. Li, N. Xi, and D. H. Wang, “Probing membrane proteins using atomic force microscopy,” J. Cellular Biochem., vol. 97, no. 6, 2006, pp. 1191–1197.

    Article  Google Scholar 

  20. B. Song, N. Xi, R. Yang, K. W. C. Lai and C. Qu, “On-line sensing and visual feedback for atomic force microscopy (afm) based nano-manipulations,” IEEE Int. Conf. Nanotechnology Materials and Devices (NMDC), Oct 2010, pp. 71–74.

    Google Scholar 

Download references

Acknowledgements

This research work is partially supported under NSF Grants IIS-0713346 and DMI-0500372; ONR Grants N00014-04-1-0799 and N00014-07-1-0935; NIH Grant: R43 GM084520 (Angelo).

The authors would also like to thank Dr. Chanmin Su of Bruker Nano Surface Instrumentation Group (former Veeco Instrument Inc.) for his technical advice and help during the process of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xi, N., Song, B., Yang, R., Lai, K. (2011). Augmented Reality for Nano Manipulation. In: Furht, B. (eds) Handbook of Augmented Reality. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0064-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0064-6_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0063-9

  • Online ISBN: 978-1-4614-0064-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics