Skip to main content

Core Relaxation Effects in Molecular Photoionization

  • Chapter
VUV and Soft X-Ray Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Ionization of K-shell or, more generally, of deep inner-shell electrons in atoms and molecules is accompanied by a considerable rearrangement of the valence (outer-shell) electrons in response to the reduced shielding of the nuclear attraction.(1) This adjustment of the valence electrons, referred to as electronic relaxation, leads to a significant energy lowering of the final ionic state relative to a state where the valence electron distribution of the initial state is maintained (“frozen”). The magnitude of this relaxation energy scales with the number of valence electrons.(2,3) In the case of the K-shell ionization of second-row atoms (Z = 3−10), for example, the relaxation energies (in eV) are approximately given by Ε R(Z) = 3.1 (Z − 2.2). In a molecular environment the corresponding relaxation energies are typically 2−3 eV larger than the values for the free atom. Relaxation not only plays a role in the ionic core but also affects the motion of the outgoing photoelectron. The relaxation of the valence electrons, being essentially a contraction of the valence charge distribution, quite effectively screens the inner-shell hole potential experienced by the photoelectron. This means that the potential of the relaxed ionic core is less attractive than its unrelaxed (frozen) counterpart. As a consequence, resonances in the photoionization cross section will appear at higher energy for a relaxed core than for an unrelaxed (frozen) core. Concomitantly with the shift to higher energy, the resonance peaks will be lowered and broadened as a result of relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For example, see H. Siegbahn and L. Karlsson, in Handbuch der Physik Vol. 31, edited by W. Mehlhorn (Springer, Berlin, 1982).

    Google Scholar 

  2. L. C. Snyder, J. Chem. Phys. 55, 95 (1971).

    Article  ADS  Google Scholar 

  3. U. Gelius, Phys. Scr. 9, 133 (1974).

    Article  ADS  Google Scholar 

  4. J. L. Dehmer and D. Dill, Phys. Rev. Lett 35, 213 (1975);J. Chem. Phys. 65, 5327 (1976).

    Article  ADS  Google Scholar 

  5. T.N. Rescigno and P. W. Langhoff, Chem. Phys. Lett 51, 65 (1977).

    Article  ADS  Google Scholar 

  6. N. Padial, G. Csanak, B. V. McKoy, and P. W. Langhoff, J. Chem. Phys. 69, 2992 (1978).

    Article  ADS  Google Scholar 

  7. N. Padial, G. Csanak, B. V. McKoy, and P. W. Langhoff, Phys. Rev. A 23, 218 (1981).

    Article  ADS  Google Scholar 

  8. W. R. Daasch, E. R. Davidson, and A. U. Hazi, J. Chem. Phys. 76, 6031 (1982).

    Article  ADS  Google Scholar 

  9. R. R. Lucchese and V. McKoy, Phys. Rev. A 26, 1406 (1982).

    Article  ADS  Google Scholar 

  10. D. Lynch, M.-T. Lee, R. R. Lucchese, and V. McKoy, J. Chem. Phys. 80, 1907 (1984).

    Article  ADS  Google Scholar 

  11. J. A. Stephens, D. Dill, and J. L. Dehmer, J. Chem. Phys. 84, 3638 (1986).

    Article  ADS  Google Scholar 

  12. For example, see J. L. Dehmer, A. C. Parr, and S. H. Southworth, in Handbook on Synchrotron Radiation, Vol. 2, edited by G. V. Marr (North-Holland, Amsterdam, 1987)

    Google Scholar 

  13. R R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).

    Article  ADS  Google Scholar 

  14. A. F. Starace, in Handbuch der Physik, Vol 31, edited by W. Mehlhorn (Springer, Berlin, 1982).

    Google Scholar 

  15. M. Y. Amusia, V. K. Ivanov, S. A. Sheinerman, S. I. Shefteu, and A. F. Ioffe, Zh. Eksp. Teor. Fiz. 78, 910 (1980) [Sov Phys. JETP 51, 458 (1980)].

    ADS  Google Scholar 

  16. M. Y. Amusia, Adv. At. Mol. Phys. 17, 1 (1981).

    Article  Google Scholar 

  17. H. P. Kelly, S. L. Carter, and B. E. Norum, Phys. Rev. A 25, 2052 (1982).

    Article  ADS  Google Scholar 

  18. Z. Altun, M. Kutzner, and H. P. Kelly, Phys. Rev. A 37, 4671 (1988).

    Article  ADS  Google Scholar 

  19. F. P. Larkins, P. D. Adeney, and K. G. Dyall, J. Electron Spectrosc. Relat. Phenom. 22, 141 (1981).

    Article  Google Scholar 

  20. G. B. Armen, B. I. Craig, F. P. Larkins, and J. A. Richards, J. Electron Spectrosc. Relat. Phenom. 51, 183 (1990).

    Article  Google Scholar 

  21. J. Tulkki and T. Aberg, J. Phys. B 18, L489 (1985).

    Article  ADS  Google Scholar 

  22. H. P. Saha, Phys. Rev. A 42, 6507 (1990).

    Article  ADS  Google Scholar 

  23. D. L. Lynch and V. McKoy, Phys. Rev.: A 30, 1561 (1984).

    Article  ADS  Google Scholar 

  24. J. Schirmer, M. Braunstein, and V. McKoy, Phys. Rev. A 41, 283 (1990).

    Article  ADS  Google Scholar 

  25. L. S. Cederbaum, W. Domcke, and J. Schirmer, Phys. Rev. A 22, 206 (1980).

    Article  ADS  Google Scholar 

  26. H. P. Kelly, Phys. Rev. 136, B896 (1964).

    Article  ADS  Google Scholar 

  27. For example, see B. H. Bransden, Atomic Collision Theory (Benjamin, New York, 1970).

    Google Scholar 

  28. R. R. Lucchese and V. McKoy, Phys. Rev. A 21, 112 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  29. For example, see B. T. Pickup and O. Goscinski, Mol Phys. 26, 1013 (1973).

    Article  ADS  Google Scholar 

  30. L. Hedin and A. Johansson, J. Phys. B 2, 1336 (1969).

    Article  ADS  Google Scholar 

  31. J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).

    Article  ADS  Google Scholar 

  32. O. Goscinski, B. T. Pickup, and G. Purvis, Chem. Phys. Lett. 22, 167 (1973).

    Article  ADS  Google Scholar 

  33. A. Denis, J. Langlet, and J. P. Malrieu, Theor. Chim. Acta 38, 49 (1975).

    Article  Google Scholar 

  34. L. S. Cederbaum and W. Domcke, J. Chem. Phys. 66, 5084 (1977).

    Article  ADS  Google Scholar 

  35. J. Schirmer, Phys. Rev. A 26, 2395 (1982).

    Article  ADS  Google Scholar 

  36. M. Braunstein, V. McKoy, L. E. Machado, L. M. Brescansin, and M. A. P. Lima, J. Chem. Phys. 89, 2998 (1988).

    Article  ADS  Google Scholar 

  37. T. H. Dunning, Jr, J. Chem. Phys. 55, 716 (1971).

    Article  ADS  Google Scholar 

  38. G. R. Wight, C. E. Brion, and M. J. van der Wiel, J. Electron Spectrosc. Relat. Phenom. 1, 457 (1973).

    Article  Google Scholar 

  39. A. P. Hitchcock and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 18, 1 (1980).

    Article  Google Scholar 

  40. R. B. Kay, Ph.E. Van der Leeuw, and M. J. van der Wiel, J. Phys. B 10, 2513 (1977).

    Article  ADS  Google Scholar 

  41. T. K. Sham, B. X. Yang, J. Kirz, and J. S. Tse, Phys. Rev. A 40, 652 (1989).

    Article  ADS  Google Scholar 

  42. M. Domke, C. Xue, A. Puschmamn, T. Mandel, E. Hudson, D. A. Shirley, and G. Kaindl, Chem. Phys. Lett. 173, 122 (1990).

    Article  ADS  Google Scholar 

  43. Y. Ma, C. T. Chen, G. Meigs, K. Randall, and F. Sette, Phys. Rev. A 44, 1848 (1991).

    Article  ADS  Google Scholar 

  44. C. M. Truesdale, D. W. Lindle, P. H. Kobrin, U. Becker, H. G. Kerkhoff, P. A. Heimann, T. A. Ferrett, and D. A. Shirley, J. Chem. Phys. 80, 2319 (1984).

    Article  ADS  Google Scholar 

  45. M. Schmidbauer, A. L. D. Kilcoyne, H.-M. Köppe, J. Feldhaus, and A. M. Bradshaw, Chem. Phys. Lett. 199, 119(1992).

    Article  ADS  Google Scholar 

  46. G. Angonoa, O. Walter, and J. Schirmer, J. Chem. Phys. 87, 6789 (1987).

    Article  ADS  Google Scholar 

  47. J. L. Dehmearn D D. Dill.A rgome National Laboratory Report No. AXL-77-65 {unpublishsd), p. 65.

    Google Scholar 

  48. D. Dill, S. Wallace, J. Siegel and J. L. Dehmer, Phys. Rev. Lett. 41, 1230 (1978); 42, 411 (1979).

    Article  ADS  Google Scholar 

  49. F. A. Grimm, Chem. Phys. 53, 71 (1980).

    Article  ADS  Google Scholar 

  50. D. M. Barrus, R. L. Blake, A. J. Burek, K. C. Chambers, and A. L. Pregenzer, Phys. Rev. A 20, 1045 (1979).

    Article  ADS  Google Scholar 

  51. A. P. Hitchcock and C. E. Brion, J. Electron Spectros. Relat Phenom. 19, 231 (1980).

    Article  Google Scholar 

  52. J. Schirmer, A. Barth, and F. Tarantelli, Chem. Phys. 122, 9 (1988).

    Article  Google Scholar 

  53. G. Angonoa and J. Schirmer, J. Mol. Struct (Theochem) 202, 203 (1989).

    Article  Google Scholar 

  54. A. L. D. Kilcoyne, M. Schmidbauer, A. Koch, K. J Randall, and J. Feldhaus, J. Chem. Phys. 98, 6735 (1993).

    Article  ADS  Google Scholar 

  55. A. P. Hitchcock and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 10, 317 (1977).

    Article  Google Scholar 

  56. A. Barth, R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Chem. Phys. 46, 149 (1980).

    Article  Google Scholar 

  57. W. L. Jolly, K. D. Bomben, and C. J. Eyermann, At. Data NucL Data Tables 31, 433 (1984).

    Article  ADS  Google Scholar 

  58. R. McLaren, S. A. C. Clark, I. Ishii, and A. R Hitchcock, Phys. Rev. A 36, 1683 (1987).

    Article  ADS  Google Scholar 

  59. R. E. Farren, J. A. Sheehy, and P W. Langhoff, Chem. Phys. Lett. 177, 307 (1991)

    Article  ADS  Google Scholar 

  60. M. N. Piancastelli, T. A. Ferrett, D. W. Lindle, L. J. Medburst, P. A. Heimann, S. H. Liu, and D. A. Shirley, J. Chem. Phys. 90, 3004 (1989).

    Article  ADS  Google Scholar 

  61. A. Klonover and U. Kaldor, J. Phys. B 11, 1623 (1978); 12, 323 (1979).

    Article  ADS  Google Scholar 

  62. B. I. Schneider and L. A. Collins, J. Phys. B 15, L335 (1982); Phys. Rev. A 27, 2847 (1983).

    Article  ADS  Google Scholar 

  63. M. Berman, O. Walter, and L. S. Cederbaum, Phys. Rev. Lett. 50, 1979 (1983).

    Article  ADS  Google Scholar 

  64. H.-D. Meyer, Phys. Rev. A 40, 5605 (1989).

    Article  ADS  Google Scholar 

  65. A. Schmitt and J. Schirmer, Chem. Phys. 164, 1 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Schirmer, J., Braunstein, M., Lee, MT., McKoy, V. (1996). Core Relaxation Effects in Molecular Photoionization. In: Becker, U., Shirley, D.A. (eds) VUV and Soft X-Ray Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0315-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0315-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7993-5

  • Online ISBN: 978-1-4613-0315-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics