Skip to main content

Introduction to Hydrogels

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

Hydrogels are a class of crosslinked polymers that, due to their hydrophilic nature, can absorb large quantities of water. These materials uniquely offer moderate-to-high physical, chemical, and mechanical stability in their swollen state. The structure of a hydrogels can be designed for a specific application by selecting proper starting materials and processing techniques. Since the equilibrium swelling capacity of a hydrogels is a balance between swelling and elastic forces, hydrogels with different swelling capacities can be designed by modulating the contribution of individual forces. Certain hydrogels respond to the changes in environmental factors by altering their swelling behavior. This chapter explains the evolution of hydrogels as a new class of the crosslinked polymers, the hydrogels structures, swelling forces, swelling kinetics, types of water in a swollen hydrogels, and composite properties of hydrogels materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jena AK, Gupta KM (1999) In-plane compression porometry of battery separators. J Power Sources 80:46–52

    Article  CAS  Google Scholar 

  2. Adamson AW (1967) Physical chemistry of surfaces. Interscience, New York

    Google Scholar 

  3. Sperling LH (2001) Introduction to physical polymer science. Wiley, New York, 3rd edition, p. 370

    Google Scholar 

  4. Jiang H et al (1999) Rheology of highly swollen chitosan/polyacrylate hydrogels. Polymer 40:4593–4602

    Article  CAS  Google Scholar 

  5. Nagorski H (1994) Characterization of a new superabsorbent polymer generation. Superabsorbent Polym 573:99–111

    Article  CAS  Google Scholar 

  6. Masuda F (1994) Trends in the development of superabsorbent polymers for diapers. Superabsorbent Polym 573:88–98

    Article  CAS  Google Scholar 

  7. Prasad HRY, Srivastava P, Verma KK (2003) Diaper dermatitis: an overview. Indian J Pediatr 70(8):635–637

    Article  CAS  Google Scholar 

  8. Prasad HRY, Srivastava P, Verma KK (2004) Diapers and skin care: merits and demerits. Indian J Pediatr 71(10):907–908

    Article  CAS  Google Scholar 

  9. Wong DL et al (1992) Diapering choices: a critical review of the issues. Pediatr Nurs 18(1):41–54

    CAS  Google Scholar 

  10. Kazanskii KS, Dubrovskii SA (1992) Chemistry and physics of agricultural hydrogels. Adv Polym Sci 104:97–133

    Article  CAS  Google Scholar 

  11. Abd El-Rehim HA (2005) Swelling of radiation crosslinked acrylamide-based microgels and their potential applications. Radiat Phys Chem 74(2):111–117

    Article  CAS  Google Scholar 

  12. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polymer Sci 93(3):1360–1371

    Article  CAS  Google Scholar 

  13. Chen P et al (2004) Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J Appl Polym Sci 93(4):1748–1755

    Article  CAS  Google Scholar 

  14. Chu M et al (2008) Influence of potassium humate on the swelling properties of a poly(acrylic acid-co-acrylamide)/potassium humate superabsorbent composite. J Appl Polym Sci 107(6):3727–3733

    Article  CAS  Google Scholar 

  15. Chu M et al (2006) Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use. J Appl Polym Sci 102(6):5137–5143

    Article  Google Scholar 

  16. El-Rehim HAA, Hegazy ES, El-Mohdy HLA (2006) Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. J Appl Polym Sci 101(6):3955–3962

    Article  Google Scholar 

  17. Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104(3):2003–2008

    Article  CAS  Google Scholar 

  18. Davies LC, Novais JM, Martins-Dias S (2004) Detoxification of olive mill wastewater using superabsorbent polymers. Environ Technol 25(1):89–100

    Article  CAS  Google Scholar 

  19. Guilherme MR et al (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61(4):464–471

    Article  CAS  Google Scholar 

  20. Li YF et al (2004) Study on the synthesis and application of salt-resisting polymeric hydrogels. Polym Adv Technol 15(1–2):34–38

    Article  CAS  Google Scholar 

  21. Luo W et al (2005) Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via gamma-ray irradiation technique. J Appl Polym Sci 96(4):1341–1346

    Article  CAS  Google Scholar 

  22. Chen L et al (2008) Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydr Polym 72(2):342–348

    Article  CAS  Google Scholar 

  23. Liang R, Liu MZ (2007) Preparation of poly(acrylic acid-co-acrylamide)/kaolin and release kinetics of urea from it. J Appl Polym Sci 106:3007–3015

    Article  CAS  Google Scholar 

  24. Liu MZ et al (2006) Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Technol 17(6):430–438

    Article  CAS  Google Scholar 

  25. Liu MZ et al (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56(6):729–737

    Article  CAS  Google Scholar 

  26. Liang R, Liu MZ (2006) Preparation and properties of coated nitrogen fertilizer with slow release and water retention. Ind Eng Chem Res 45(25):8610–8616

    Article  CAS  Google Scholar 

  27. Chang CJ, Swift G (1999) Poly(aspartic acid) hydrogel. J Macromol Sci – Pure Appl Chem A36(7–8):963–970

    CAS  Google Scholar 

  28. Zhao Y, Kang J, Tan TW (2006) Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47(22):7702–7710

    Article  CAS  Google Scholar 

  29. Sannino A et al (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67A(3):1016–1024

    Article  CAS  Google Scholar 

  30. Pourjavadi A, Aghajani V, Ghasemzadeh H (2008) Synthesis, characterization and swelling behavior of chitosan–sucrose as a novel full-polysaccharide superabsorbent hydrogel. J Appl Polym Sci 109(4):2648–2655

    Article  CAS  Google Scholar 

  31. Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93

    CAS  Google Scholar 

  32. Omidian H, Park K, Rocca JG (2007) Recent developments in superporous hydrogels. J Pharm Pharmacol 59(3):317–327

    Article  CAS  Google Scholar 

  33. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12

    Article  CAS  Google Scholar 

  34. Abbasi A, Eslamian M, Rousseau D (2008) Modeling of caffeine release from crosslinked water-swellable gelatin and gelatin–maltodextrin hydrogels. Drug Deliv 15(7):455–463

    Article  CAS  Google Scholar 

  35. Brazel CS, Peppas NA (1999) Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer 40(12):3383–3398

    Article  CAS  Google Scholar 

  36. Buonocore GG et al (2003) A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. J Control Release 90(1):97–107

    Article  CAS  Google Scholar 

  37. Sannino A et al (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212

    Article  CAS  Google Scholar 

  38. Wang WB, Zheng YA, Wang AQ (2008) Synthesis and properties of superabsorbent composites based on natural guar gum and attapulgite. Polym Adv Technol 19(12):1852–1859

    Article  CAS  Google Scholar 

  39. Shimomura T, Namba T (1994) Preparation and application of high-performance superabsorbent polymers. Superabsorbent Polym 573:112–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Omidian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Omidian, H., Park, K. (2010). Introduction to Hydrogels. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_1

Download citation

Publish with us

Policies and ethics