Skip to main content

Worldwide Observations of Infrasonic Waves

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The international monitoring system (IMS) is designed to ensure compliance with the comprehensive nuclear-test-ban treaty (CTBT). The infrasound component of the IMS consists of a 60-station network of infrasound monitoring stations distributed uniformly over the face of the globe. This network is designed to reliably detect and locate atmospheric nuclear explosion. IMS infrasound monitoring stations are located in a wide variety of environments ranging from the hot and humid equatorial tropics, to barren wind-swept deserts and the ice-covered wastes of the Polar regions. A large number of signals from a wide variety of sources have been recorded at IMS infrasound stations. Some types of signal are routinely detected at all stations, while other types may be unique to a particular station or region. This chapter provides a thorough survey of the various types of infrasonic signals that have been detected at stations in the global network and a discussion of the potential benefits of the use of infrasonic data from this unique global network in international scientific projects and in geophysical hazard warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah AJ (1966) The “musical” sound emitted by a tornado. Mon Weather Rev 94:213–220

    Article  Google Scholar 

  • Axefors B, Backteman O, Bennerhult O, Nilsson NA (1985) Infrasound: a bibliography of articles up till April 1983, Swedish Defense Materiel Admin., Strockholm, Sweden

    Google Scholar 

  • Arendt S, Fritts D (2000) Acoustic radiation by ocean surface waves. J Fluid Mech 415:1–21

    Article  Google Scholar 

  • Arnoult KM, Wilson CR, Olson JV, Szuberla CAL (2005) Infrasound associated with Mt Steller avalanche. Inframatics 12:4–7

    Google Scholar 

  • Assink JD, Evers LG, Holleman I, Paulssen H (2008) Characterization of infrasound from lightning. Geophys Res Lett 35:L15802

    Article  Google Scholar 

  • Baird HF, Banwell CJ (1940) Recording of air-presure oscillations associated with microseisms at Christchurch, New Zealand. J Sci Technol 21B:314–329

    Google Scholar 

  • Balachandran NK (1982) Acoustic and electric signals from lightning. J Geophys Res 88:3879–3884

    Article  Google Scholar 

  • Balachandran NK, Donn WL (1971) Characteristics of infrasonic signals from rockets. Geophys J R astr Soc 26:135–148

    Google Scholar 

  • Balachandran NK, Donn WL, Rind DH (1977) Concorde sonic booms as an atmospheric probe. Science 197:47–49

    Article  Google Scholar 

  • Barruol G, Reymond D, Fontaine FR, Hyvernaud O, Maurer V, Maamaatuaiahutapu K (2006) Characterizing swells in the southern Pacific from seismic and infrasonic noise analyses. Geophys J Int 164:516–542

    Article  Google Scholar 

  • Bass HE, Tenney S, Clark P, Noble J, Gibson R, Norris D, Bhattacharyya J, Bondar I, Israelsson H, North R, Skov M, Woodward R, Yang X, Whitaker R, Sandoval T, Revelle D, Bedard A, Nishiyama R, Gasiewski A, Drob D, Hedlin M, D’Spain G, Murray J, Rovner G, Berger L, Garcés M, Hetzer C, Herrin E, Hayward C (2003). Report to the Department of Defense on Infrasonic Re-entry Signals from the Space Shuttle Columbia (STS-107) (Revision 3.0). American Geophysical Union, Fall Meeting 2003, abstract #U32B-02

    Google Scholar 

  • Brackteman O, Kohler J, Sjoberg L (1985) Infrasound: a summary of interesting articles, Swedish Defense Materiel Admin., Stockholm, Sweden

    Google Scholar 

  • Bedard AJ Jr, (1988) Infrasound from natural sources in Internoise 88. Proceedings from the 1988 International Conference on Noise Control Engineering, Avignon, France

    Google Scholar 

  • Bedard AJ Jr (1993) Low-frequency sound waves associated with avalanches, atmospheric turbulence, severe weather, and earthquakes. J Acoust Soc Am 94(3):1872

    Article  Google Scholar 

  • Bedard AJ Jr, (1994) Evaluation of atmospheric infrasound for monitoring avalanches. Proceedings of the 7th international symposium on acoustic remote sensing and associated techniques of the atmosphere and oceans, Boulder, Colorado, 3–5 October 1994.

    Google Scholar 

  • Bedard AJ Jr, (1998) Infrasonic detection of severe weather. Proceedings of the 19th conference on severe local storms, American Meteor Society, Minneapolis, MN, Paper 6.6

    Google Scholar 

  • Bedard AJ Jr (2005) Low frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon Weather Rev 133:241–263

    Article  Google Scholar 

  • Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring the earth’s atmosphere with the global IMS infrasound network. This volume, pp. 73–114

    Google Scholar 

  • Bedard AJ Jr, Bartram BW, Keane AN, Welsh DC, Nishiyama RT (2004a) The infrasound Network (ISNET): Background, design details, and display capability as an 88D adjunct tornado detection tool. Proceedings of the 22nd conference on severe local storms, American Meteor Society, Hyannis, MA, Paper 1.1

    Google Scholar 

  • Bedard AJ Jr, Bartram BW, Entwistle B, Golden J, Hodanish S, Jones RM, Nishiyama RT, Keane AN, Mooney L, Nicholls M, Szoke EJ, Thaler E, Welsh DC (2004b) Overview of the ISNET data set and conclusions and recommendations from a March 2004 workshop to review ISNET data. Proceedings of the 22nd Conference on severe local storms, American Meteor Society, Hyannis, MA, Paper 2.8

    Google Scholar 

  • Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Amer Met Soc 20:421–426

    Google Scholar 

  • Bowman HS, Bedard AJ (1971) Observations of infrasound and subsonic disturbances related to severe weather. Geophys J R astr Soc 26:215–242

    Google Scholar 

  • Brown PG, Whitaker RW, ReVelle DO, Tagliaferri E (2002a) Multi-station infrasonic observations of two large bolides: Signal interpretation and implications for monitoring of atmospheric explosions. Geophys Res Lett 29:1636. doi:10.1029/2001GL013778

    Article  Google Scholar 

  • Brown P, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002b) The flux of small near-Earth objects colliding with the Earth. Nature 420:314–316

    Google Scholar 

  • Campus P (2003) The CTBT IMS infrasound network: Status of the actual installations and examples of infrasound signals recorded at the existing stations. Proceedings of the American Geophysical Union (AGU) Fall Meeting 2003, San Francisco, California, 8–12 December 2003

    Google Scholar 

  • Campus P (2004) The IMS infrasound network and its potential for detection of events: examples of a variety of signals recorded around the world. Inframatics 6:14–22

    Google Scholar 

  • Campus P (2005) The IMS infrasound network and monitoring of volcanoes. Proceedings of the 2005 Infrasound Technology Workshop, Tahiti, 28 November–2 December 2005

    Google Scholar 

  • Campus P (2006a) Monitoring volcanic eruptions with the IMS infrasound network. Inframatics 15:6–12

    Google Scholar 

  • Campus P (2006b) Monitoring volcanoes at the CTBT IMS infrasound network. Proceedings of the 2006 Infrasound Technology Workshop, Fairbanks, Alaska, USA, 25–28 September 2006

    Google Scholar 

  • Campus P (2007a) The IMS infrasound network: detection of a large variety of events, including volcanic eruptions. Proceedings of the 8th International Conference on Theoretical and Computational Acoustics, Heraklion, Crete, 02-06 July 2007.

    Google Scholar 

  • Campus P (2007b) The IMS infrasound network: detection of a large variety of events including volcanic eruptions. Proceedings of the 2007 Infrasound Technology Workshop, Tokyo, Japan, 13–16 November 2007.

    Google Scholar 

  • Campus P (2007c) Eruptions detected with the global infrasonic array network of the International Monitoring System. Proceedings of the second international workshop on acoustic remote sensing of volcanoes, Shimabara, Japan, 18 November, 2007

    Google Scholar 

  • Campus P (2008) The IMS infrasound network and its potential for detections of a wide variety of man-made and natural events. Proceedings Infrasound Technology Workshop, Bermuda, 3–7 November 2008

    Google Scholar 

  • Campus P, Christie DR, Brown D (2005) Detection of infrasound from the eruption of Manam volcano on January 27, 2005. Proceedings of the 2005 infrasound technology workshop, Tahiti, 28 November – 2 December 2005 and Proceedings of the first international workshop on acoustic remote sensing of volcanoes, Quito, 22 January, 2006

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the PMCC method. Geophys Res Lett 22:1021–1024

    Article  Google Scholar 

  • Cansi Y, Le Pichon A (2008) Infrasound event detection using the progressive multi-channel correlation algorithm. Handbook of signal processing in acoustics, Chapter 77, 1425–1435, Springer, New York

    Google Scholar 

  • Ceranna L, Le Pichon A (2006) The Buncefield fire: a benchmark for infrasound analysis in Europe. Proceedings of the 2006 infrasound technology workshop, Fairbanks, Alaska, USA, 25–28 September 2006

    Google Scholar 

  • Chen P, Christie DR (1995) Infrasonic detection of volcanic explosions by the International Monitoring System: implications for aviation safety. 2nd meeting international civil aviation volcanic ash warning study group, Montreal, Canada, 2 November 1995

    Google Scholar 

  • Chimonas G (1977) A possible source mechanism for mountain-associated infrasound. J Atmos Sci 34:806–811

    Google Scholar 

  • Christie DR (1989) Long nonlinear waves in the lower atmosphere. J Atmos Sci 46:1462–1491

    Article  Google Scholar 

  • Christie DR (1992) The Morning Glory of the Gulf of Carpentaria: a paradigm for non-linear waves in the lower atmosphere. Aust Meteor Mag 41:21–60

    Google Scholar 

  • Christie DR (2004) Observations of infrasound in central Australia. Proceedings Infrasound Technology Workshop, Hobart, Australia, 29 November–3 December 2004

    Google Scholar 

  • Christie DR, Kennett BLN (2007) Detection of nuclear explosions using infrasound techniques. Final Report AFRL-RV-HA-TR-2007-1151, Air force research laboratory, Hanscom AFB, MA, Available from United States Technical Information Service

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. This volume, pp. 27–72

    Google Scholar 

  • Christie DR, Muirhead KJ, Hales AL (1978) On solitary waves in the atmosphere. J Atmos Sci 35:805–825

    Article  Google Scholar 

  • Christie DR, Kennett BLN, Tarlowski C (2005) Detection of regional and distant atmospheric explosions. Proceedings of the 27th Seismic Research Review, Rancho Mirage, California, 20–22 September 2005, 817–827

    Google Scholar 

  • Chrzanowski P, Green G, Lemmon KT, Young JM (1961) Travelling pressure waves associated with geopmagnetic activity. J Geophys Res 66:3727–3733

    Article  Google Scholar 

  • Cook RK (1971) Infrasound radiated during the Montana Earthquake of 1959 August 18. Geophys J R astr Soc 26:191–198

    Google Scholar 

  • Cotten DE, Donn WL, Oppenheim A (1971) On the generation and propagation of shock waves from apollo rockets at orbital altitudes. Geophys J Int 26:149–159

    Google Scholar 

  • Cotton DE, Donn WL (1971) Sound from Apollo rockets in space. Science 171:656

    Article  Google Scholar 

  • Cox EF (1949) Abnormal audibility zones in long distance propagation through the atmosphere. J Acoust Soc Am 21:6–16

    Article  Google Scholar 

  • Davidson M, Whitaker RW (1992) Miser’s Gold, Los Alamos National Laboratory Technical Report: LA-12074-MS, February

    Google Scholar 

  • Dessler AJ (1973) Infrasonic thunder. J Geophys Res 78:1889–1896

    Article  Google Scholar 

  • Donn WL (1978) Exploring the atmosphere with sonic booms. Am Sci 66:724–733

    Google Scholar 

  • Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541

    Article  Google Scholar 

  • Donn WL, Naini B (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78:4482–4488

    Article  Google Scholar 

  • Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R astr Soc 26:111–133

    Google Scholar 

  • Donn WL, Rind D (1972) Microbaroms and the temperature and winds in the upper atmosphere. J Atmos Sci 29:156–172

    Article  Google Scholar 

  • Donn WL, Shaw DM (1967) Exploring the atmosphere with nuclear explosions. Rev Geophys 5:53–82

    Article  Google Scholar 

  • Donn WL, Balachandran NK, Kaschak G (1974) Atmospheric infrasound radiated by bridges. J Acoust Soc Am 56:1367

    Article  Google Scholar 

  • Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. J Geophys Res 108, doi:10.1029/2002JD003307

    Google Scholar 

  • Drob D, O’Brien M, Bowman R (2006) HWM upgrade for infrasound propagation calculations. Proceedings of the 2006 Infrasound Technology Workshop, Fairbanks, Alaska, USA, 25–28 September 2006

    Google Scholar 

  • Drob DP, Garcés M, Hedlin M, Brachet N (2007) The temporal morphology of infrasound propagation. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • de Groot-Hedlin C, Hedlin MAH, Walker KT (2008) Evaluation of infrasound signals from the shuttle Arlantis using a large seismic network. J Acoust Soc Am 124:1442–1451

    Google Scholar 

  • de Groot-Hedlin C, Hedlin M, Walker K, Drob D, Zumberge M (2007) Study of infrasound propagation from the shuttle Atlantus using a large sesimic network. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Edwards WN, Brown P, ReVelle DO (2006) Estimates of metereoid kinetic energies from observations of infrasonic waves. J Atmos Solar-Terrestrial Phys 68:1136–1160

    Article  Google Scholar 

  • Evers L (2005) Infrasound monitoring in the Netherlands. J Netherlands Acoust Soc (Nederlands Akoestisch Genootschap) 176:1–11

    Google Scholar 

  • Evers LG (2008) The inaudible symphony: on the detection and source identification of atmospheric infrasound. Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, ISBN 978-90-71382-55-0

    Google Scholar 

  • Evers L, Haak H (2001) Recent observations at the Deelen Infrasound array. Proceedings Infrasound Technology Workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Evers LG, Haak HW (2003) Tracing a meteoric trajectory with infrasound. Geophys Res Lett, 30(24): 2246, doi:10.1029/2003GL017947

  • Evers LG, Haak HW (2005) The detectability of infrasound in The Netherlands from the Italian volcano Mt Etna. J Atmos Sol Terr Phys 67:259–268. doi:10.1016/j.jastp. 2004.09.002

    Article  Google Scholar 

  • Evers L, Haak H (2006) Seismo-acoustic analysis of explosions and evidence for infrasonic forerunners. Proceedings of the 2006 infrasound technology workshop, Fairbanks, Alaska, USA, 25–28 September 2006

    Google Scholar 

  • Evers L, Haak H (2007) Infrasonic forerunners: Exceptionally fast acoustic phases. Geophys Res Lett 34:L10806. doi:10.1029/2007GL029353

    Article  Google Scholar 

  • Evers L, Ceranna L, Haak HW, Le Pichon A, Whitaker RW (2007) A seismoacoustic analysis of the gas-pipeline explosion near ghislenghien in Belgium. Bull Seism Soc Am 97(2):417

    Article  Google Scholar 

  • Farges T, Blanc E, Le Pichon A, Neubert T, Allin TH (2005) Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys Res Lett 32:L01813. doi:10.1029/2004GL021212

    Article  Google Scholar 

  • Few AA (1970) Lightning channel reconstruction from thunder measurements. J Geophys Res 75(36):7517–7523

    Article  Google Scholar 

  • Few AA (1985) The production of lightning-associated infrasonic acoustic sources in thunderclouds. J Geophys Res 90:6175–6180

    Article  Google Scholar 

  • Greene GE, Howard J (1975) Natural infrasound: a one year global study, NOAA, TR, ERL 317-WPL-37

    Google Scholar 

  • Garcés M, Hetzer C, Merrifield M, Willis M, Aucan J (2003) Observations of surf infrasound in Hawai’i. Geophys Res Lett 30(24):2264, doi:10.1029/2003GL018614

  • Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004a) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:L19304. doi:10.1029/2004GL020696

    Article  Google Scholar 

  • Garcés M, Bass H, Drob D, Hetzer C, Hedlin M, Le Pichon A, Lindquist K, North R, Olson J (2004b) Forensic studies of infrasound from massive hypersonic sources. EOS 85(43):433

    Article  Google Scholar 

  • Garcés M, Fee D, Steffke A, McCormack D, Servranckx R, Bass H, Hetzer C, Hedlin M, Matoza R, Yepes H, Ramon P (2008) Capturing the acoustic fingerprint of stratospheric ash injection. EOS, Tran Am Geophys Union, 89: 377–378

    Google Scholar 

  • Georges TM (1973) Infrasound from convective storms: Examining the evidence. Rev Geophys Space Phys 11:571–594

    Article  Google Scholar 

  • Goerke VH, Woodward MW (1966) Infrasonic observation of a severe weather system. Mon Weather Rev 94:395–398

    Article  Google Scholar 

  • Goerke VH, Young JM, Cook RK (1965) Infrasonic observations of the 1963 volcanic explosion on the island of Bali. J Geophys Res 70:6017–6022

    Article  Google Scholar 

  • Green D (2008). Assessing the detection capability of the International Monitoring System infrasound network. AWE Report 629/08, AWE Aldermaston, p. 91

    Google Scholar 

  • Green D, Bowers D, Drob D, Hort M (2006) The Buncefield oil depot explosion: extending signal coverage using airwaves recorded on seismometers. Proceedings of the 2006 infrasound technology workshop, Fairbanks, Alaska, USA, 25–28 September 2006

    Google Scholar 

  • Greene GE, Bedard AJ (1986) Infrasound from distant rocket launches, national oceanic and atmospheric administration technical report No: NOAA-TM-ERL-WPL-131, February NTIS Number: PB86-182771/HDM

    Google Scholar 

  • Grover FH (1968) Research notes: a note on infrasonics at U.K.A.E.A. Blacknest. Geophys J R astr Soc 16:311

    Google Scholar 

  • Grover FH (1973) Geophysical effects of Concord sonic boom. Q Jl R astr Soc 14:141–160

    Google Scholar 

  • Grover FH, Marshall PD (1968) Ground to air coupled waves from a distant earthquake. Nature 220:686–687

    Article  Google Scholar 

  • Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere in Southern California. Bull Am Met Soc 20:192–201

    Google Scholar 

  • Gutenberg B, Benioff H (1941) Atmospheric pressure waves near Pasadena. Trans Amer Geophys Union 22:424–426

    Google Scholar 

  • Hagerty M, Kim WY, Martysevhich P (2002) Infrasound detection of large mining blasts in Kazakstan. Pure Appl Geophys 159(5):1063–1079

    Article  Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermosphere model in the middle and lower atmosphere. J Geophys Res 96:1159–1172

    Article  Google Scholar 

  • Hedin AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA (1996) Empirical wind model for the upper, middle and lower atmosphere. J Atmos Terr Phys 58:1421–1444

    Article  Google Scholar 

  • Hetzer C, Waxler R, Talmadge C, Garcés M, Gilbert K, Bass H (2007) Hurricane studies using infrasound. Proceedings Infrasound Technology Workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Itikari I, Campus P, Martysevich P, Hoffman T (2003) IS40 and infrasound waves from volcanic explosions. Proceedings of the 2003 Infrasound Technology Workshop, La Jolla, California, USA, 27–30 October 2003

    Google Scholar 

  • Kunhikrishnan PK, Krishna Murthy BV (1982) Atmospheric pressure perturbations during total solar eclipse on 16 February 1980, Proceedings of Indian National Science Academy 48A, suppl. 3: 238

    Google Scholar 

  • Larson RJ, Craine LB, Thomas JE, Wilson CR (1971) Correlation of winds and geographic features with production of certain infrasonic signals in the atmosphere. Geophys J R astr Soc 26:201–214

    Google Scholar 

  • Le Pichon A, Cansi Y (2003) PMCC for infrasound data processing. Inframatics 2:1–9

    Google Scholar 

  • Le Pichon A, Drob D (2004) Probing high-altitude winds using infrasound from volcanoes. Inframatics 8:1–16

    Google Scholar 

  • Le Pichon A, Guilbert J, Cansi Y (2001) Infrasonic waves from natural sources. Proceedings infrasound technology workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Le Pichon A, Guilbert J, Vallée M, Dessa JX, Ulziibat M (2003) Infrasonic imaging of the Kunlun Mountains for the great 2001 China earthquake. Geophys Res Lett 30(15): 1814, doi:10.1029/2003GL017581

  • Le Pichon A, Blanc E, Drob D (2005a) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104. doi:10.1029/2005JD006020

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005b) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13106. doi:10.1029/2004JD005587

    Article  Google Scholar 

  • Le Pichon A, Herry P, Mialle P, Vergoz J, Brachet N, Garcés M, Drob D, Ceranna L (2005c) Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys Res Lett 32:L19802. doi:10.1029/2005GL023893

    Article  Google Scholar 

  • Le Pichon A, Antier K, Drob D (2006a) Multi-year validation of the NRL-G2S wind fields using infrasound from Yasur. Inframatics 16:1–9

    Google Scholar 

  • Le Pichon A, Ceranna L, Garcés M, Drob D, Millet C (2006b) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere, J Geophys Res 111, doi:10.1029/2005JD006690

    Google Scholar 

  • Le Pichon A, Mialle P, Guilbert J, Vergoz J (2006c) Multistation infrasonic observations of the Chilean earthquake of 2005 June 13. Geophys J Int 167:838–844

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring System infrasound network: geographical coverage and temporal variabilities. J Geophys Res, 114:D08112. doi:10.1029/2008JD010907

  • Lees JM, Gordeev EI, Ripepe M (2004) Explosions and periodic tremor at Karymsky volcano, Kamchatka. Russia Geophys J Int 158:1151–1167

    Google Scholar 

  • Lin TL, Langston CA (2007) Infrasound from Thunder: A Natural Seismic Source. Geophys Res Lett 34:L14304. doi:10.1029/2007GL030404

    Article  Google Scholar 

  • Liszka L (1974) Long-distance propagation of infrasound from artificial sources. J Acoust Soc Am 56:1383

    Article  Google Scholar 

  • Liszka L (2004) On the possible infrasound generation by sprites. J Low Frequency Noise, Vibration and Active Control 23:85–93

    Article  Google Scholar 

  • Liszka L (2008a) Infrasound: A summary of 35 years of research. IRF Scientific Report 291, Swedish Institute of Space Physics, Umeå, Sweden, p. 150

    Google Scholar 

  • Liszka L (2008b) Listening to meteors. IRF Scientific Report 295, Swedish Institute of Space Physics, Umeå, Sweden, p. 66 pp

    Google Scholar 

  • Liszka L, Garcés MA (2002) Infrasonic observations of the Hekla eruption of February 26, 2000, J. Low Freq. Noise, Vibration, and Active Control 21: 1–8

    Google Scholar 

  • Liszka L, Hobara Y (2006) Sprite-attributed infrasonic chirps – their detections, occurrence and properties between 1994 and 2004. J Atmos Solar-Terrestrial Phys 68:1179–1188

    Article  Google Scholar 

  • Liszka L, Waldemark K (1995) High resolution observations of infrasound generated by the supersonic flight of the Concorde. J. Low Frequency Noise and Vibration 14(4):181–192

    Google Scholar 

  • Longuet-Higgens MS (1950) A theory of the origin of microseisms. Phil Trans R Soc Lond A 243:1–35

    Article  Google Scholar 

  • Maeda K, Young J (1966) Propagation of pressure waves produced by auroras. J. Geomagn., Kyoto, 18: 275–299

    Google Scholar 

  • Matoza RS, Hedlin MAH, Garcés MA (2007) An infrasound array study of Mount St. Helens. J Volcanology Geothermal Res 160: 249–262

    Google Scholar 

  • McIntosh BA, ReVelle DO (1984) Traveling Atmospheric Pressure Waves Measured During a Solar Eclipse. J Geophys Res 89:4953

    Article  Google Scholar 

  • McIntosh BA, Watson MD, ReVelle DO (1976) Infrasound from a radar-observed meteor. Can J Phys 54:655–662

    Google Scholar 

  • Melton BS, Bailey LF (1957) Multiple signal correlators. Geophysics 22:565–588

    Article  Google Scholar 

  • Mutschlecner JP, Whitaker RW (2005) Infrasound from earthquakes. J Geophys Res 110, doi:10.1029/2004JD005067

    Google Scholar 

  • McKisic JM (1996) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: an annotated bibliography, Department of Energy and Phillips Laboratory Air Force Materiel Command, PL-TR-96-2282

    Google Scholar 

  • Mutschlecner JP, Whitaker RW, Auer LH (1999) An empirical study of infrasound propagation, Los Alamos Nat. Lab. Tech Rep. LA-13620-MS

    Google Scholar 

  • Olson J (2004) Infrasound signal detection using the Fisher F-statistics. Inframatics 6:1–8

    Google Scholar 

  • Olson J, Wilson CR, Hansen RA (2003) Infrasound associated with the 2002 Denali fault earthquake. Alaska Geophys Res Lett 30:2195. doi:10.1029/2003GL018568

    Article  Google Scholar 

  • Posey JW, Pierce AD (1971) Estimation of nuclear explosion energies from microbaragraph records. Nature 232:253

    Article  Google Scholar 

  • Posmentier ES (1967) A theory of microbaroms. Geophys J Int 13:487–501

    Article  Google Scholar 

  • Posmentier ES (1971) Preliminary observations of 1–16 Hz natural background infrasound and signals from Apollo 14 and aircraft. Geophys J R astr Soc 26:173–177

    Google Scholar 

  • Procunier RW (1971) Observations of acoustic aurora in the 1–16 Hz range. Geophys J R astr Soc 26:183–189

    Google Scholar 

  • Reed JW (1969) Climatology of airblast propagations from nevada test site nuclear airbursts, Sandia National Laboratory Report SC-I.R.-69-572 m December

    Google Scholar 

  • Reed JW (1987a) Air pressure waves from Mount St. Helens eruptions. J Geophys Res 92(11):979

    Google Scholar 

  • Reed JW (1987b) Climatological assessment of expolosion airblast propagation, Sandia National Laboratory Terchnical Report No. SAND-86-2180C (Conference Proceedings), NTIS Number: DE87010510/HDM

    Google Scholar 

  • ReVelle DO (1976) On meteor-generated infrasound. J Geophys Res 81:1217–1229

    Article  Google Scholar 

  • ReVelle DO (1997) Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Annals of the New York Academy of Sciences, Volume 822, Near-Earth Objects: The United Nations Conference, 284–302

    Google Scholar 

  • Richardson J, Fitzgerald K, Pennington W (2008) Seismic and acoustic observations of Bering Glacier calving events. EOS Trans. AGU, 89 (83), Fall Meeting Supplement, Abstract C11A-0479

    Google Scholar 

  • Rind D (1977) Heating of the lower thermosphere by the dissipation of acoustic waves. J Atmos Terrestrial Phys 39:445–456

    Article  Google Scholar 

  • Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40:1199–1209

    Article  Google Scholar 

  • Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704

    Article  Google Scholar 

  • Rind D, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729

    Article  Google Scholar 

  • Rockway JW, Hower GL, Craine LB, Thomas JE (1974) Application of ray-tracing to observations of mountain-associated infrasonic waves. Geophys J R astr Soc 35:259–266

    Google Scholar 

  • Scott ED, Hayward CT, Kubichek RF, Hamann JC, Pierre JW, Comey B, Mendenhall T (2007) Single and multiple sensor identification of avalanche-generated infrasound. Cold Reg Sci Technol 47:159–170

    Article  Google Scholar 

  • Sorrells G, Bonner J, Herrin ET (2002) Seismic precursors to space shuttle shock fronts. Pure Appl Geophys 159:1153–1181

    Article  Google Scholar 

  • Symons GJ (ed) (1888) The eruption of Kraktoa and subsequent phenomena. Harrison and Sons, London

    Google Scholar 

  • Thomas JE, Pierce AD, Flinn EA, Craine LB (1971) Bibliography on infrasonic waves, Geophys J. R. astr Soc 26:399

    Google Scholar 

  • Thomas JE, Pierce AE, Flinn EA, Craine LB (1972) Supplement to ‘Bibliography on Infrasonic Waves, Geophys J. R. astr Soc 30:1

    Google Scholar 

  • Walker KT, Zumberge MA, Hedlin MAH, Shearer PM (2008) Methods for determining infrasound phase velocity direction with an array of line sensors. J Acoust Soc Am 124:2090–2099

    Article  Google Scholar 

  • Whitaker R (2007) Infrasound signals as basis for event discriminants. Proceedings of the 29th Monitoring Research Review, Denver, Colorado, 25–27 September 2007, 905–913

    Google Scholar 

  • Whitaker R (2008) Infrasound signals from ground-motion sources. Proceedings of the 30th monitoring research review, Portsmouth, Virginia, 23–25 September 2008, 912–920

    Google Scholar 

  • Wilson CR (1967) Infrasonic pressure waves from the aurora; a shock wave model. Nature 214:1299

    Article  Google Scholar 

  • Wilson CR (1971) Auroral infrasonic waves and poleward expansions of auroral substorms at Inuvik, N.W.T., Canada. Geophys. J. R. astr. Soc., 26: 179-181

    Google Scholar 

  • Wilson CR (2005) Infrasound from auroral electrojet motions at I53US. Inframatics 10:1–13

    Google Scholar 

  • Wilson CR, Olson JV (2003) Mountain associated waves at I53US and I55US in Alaska and Antarctica in the frequency passband from 0.015 to 0.10 Hz. Inframatics 3:6–10

    Google Scholar 

  • Wilson CR, Olson JV (2005a) Frequency domain coherence between high trace-velocity infrasonic signals at I53US and video data from pulsating aurora. Inframatics 9:27–30

    Google Scholar 

  • Wilson CR, Olson JV (2005b) 153US and 155US signals from Manam Volcano. Inframatics 9:31–35

    Google Scholar 

  • Wilson CR, Szuberla CAL, Olson JV (2010) High-latitude observations of infrasound from Alaska and Antarctica: mountain associated waves and geomagnetic/auroral Infrasonic signals. This volume, pp. 409–448

    Google Scholar 

  • Wilson CR, Olson JV, Osborne DL, Le Pichon A (2003) Infrasound from Erebus Volcano at I55US in Antarctica. Inframatics 4:1–8

    Google Scholar 

  • Young JM, Greene GE (1982) Anamalous infrasound generated by the Alaskan earthquake of 28 March 1964. J Acoust Soc Am 71:334–339

    Article  Google Scholar 

Download references

Acknowledgments

Paola Campus expresses her thanks to the Département, Analyse, Surveillance de l’Environment (CEA/DAM/DIF/DASE) for the use of PMCC software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Campus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Campus, P., Christie, D.R. (2010). Worldwide Observations of Infrasonic Waves. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_6

Download citation

Publish with us

Policies and ethics