Skip to main content

Do Impacts Really Cause Most Mass Extinctions?

  • Chapter
From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

Abstract

For the past 28 years, the trendy “bandwagon” in the geosciences has attempted to explain most mass extinctions by extraterrestrial impact events. However, the past decade of research has shown no significant evidence of impacts at any mass extinction horizon except for the Cretaceous-Tertiary boundary at 65 Ma. In fact, numerous paleontologists have even questioned whether the Cretaceous-Tertiary impact was as important as once supposed. Alleged impact horizons at the other major mass extinctions have proven to be of the wrong age or the wrong size. By contrast, there were many major impacts (especially in the late Eocene) that had no effect on life whatsoever, further falsifying the impact hypothesis as a general explanation. Explaining all the major mass extinctions by huge mantle-derived flood basalt eruptions has also failed, as such eruptions occur at only three of the extinction horizons. Attempts to find a general explanation that explains all mass extinctions are usually unsuccessful, because there are no common signals at every mass extinction. Each event shows a distinct and different pattern. Currently, the trendy model postulates high carbon dioxide and low oxygen in the atmosphere, although it only works for the Permo-Triassic, Triassic-Jurassic, and possibly Paleocene-Eocene events, and no others, and it has not fared well in preliminary testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alroy, J. (2002) Extraterrestrial bolide impacts and biotic change in North American mammals. Journal of Vertebrate Paleontology 22 (supplement to no. 3), 32A.

    Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Alvarez, W., Asaro, F., Michel, H., and Alvarez, L.W. (1982) Iridium anomaly approximately synchronous with terminal Eocene extinctions. Science 216, 886–888.

    Article  ADS  Google Scholar 

  • Archibald, J.D. (1996) Dinosaur Extinction and the End of an Era: What the Fossils Say. Columbia University Press, New York.

    Google Scholar 

  • Arthur, M.A. (2006) Hits and misses: why some large impacts and LIPs cause mass extinction and others don’t. Geological Society of America Abstracts with Programs 38(7), 338.

    Google Scholar 

  • Asaro, F., Alvarez, L.W., Alvarez, W., and Michel, H.V. (1982) Geochemical anomalies near the Eocene/Oligocene and Permian/Triassic boundaries. Geological Society of America Special Paper 190, 517–528.

    Google Scholar 

  • Bambach, R.K., Knoll, A.H., and Wang, S.C. (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542.

    Article  Google Scholar 

  • Becker, L., Poreda, R.J., Hunt, A.G., Bunch, T.E., and Rampino, M. (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1533.

    Article  ADS  Google Scholar 

  • Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harrison, T.M., Nicholson, C., and Iasky, R. (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science Express Research Article 10.1126/science.l093925.

    Google Scholar 

  • Benton, M.J. (2005) When Life Nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London.

    Google Scholar 

  • Bottomley, R., Grieve, R.A.F., York, D., and Masaitis, Y. (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388, 365–368.

    Article  ADS  Google Scholar 

  • Bowring, S.A., Erwin, D.H., Jin, Y.G., Martin, M.W., Davidek, K., and Wang, W. (1998) U/Pb zircon geochronology and the tempo of the end-Permian mass extinction. Science 280, 1039–1045.

    Article  ADS  Google Scholar 

  • Braun, T., Osawa, E., Detre, C., and Toth, I. (2001) On some analytical aspects of the determination of fullerenes in samples from the Permian/Triassic boundary layers. Chemical Physics Letters 348, 361–362.

    Article  ADS  Google Scholar 

  • Brysse, K. (2004) Off-limits to no one: vertebrate paleontologists and the Cretaceous-Tertiary mass extinction. Unpublished Ph.D. dissertation, University of Alberta, Alberta, Canada.

    Google Scholar 

  • Coccioni, R., Basso, D., Brinkhuis, H., Galeotti, S., Gardin, S., Monechi, S., and Spezzaferri, S. (2000) Marine biotic signals across a late Eocene impact layer at Massignano, Italy: evidence for long-term environmental perturbations? Terra Nova 12, 258–263.

    Article  Google Scholar 

  • Courtillot, V. (1999) Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge University Press, Cambridge.

    Google Scholar 

  • Courtillot, V. and Renne, PR. (2003) On the ages of flood basalt events. Comptes Rendus Geoscience 335, 113–140.

    Article  ADS  Google Scholar 

  • Davis, M., Hut, P., and Muller, R.A. (1984) Extinction of species by periodic comet showers. Nature 308, 715–717.

    Article  ADS  Google Scholar 

  • Dingus, L.L. and Rowe, T. (1998) The Mistaken Extinction: Dinosaur Evolution and the Origin of Birds. W.H. Freeman, New York.

    Google Scholar 

  • Erwin, D.H. (2006) Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Farley, K.A. and Mukhopadhyay, S. (2001) An extraterrestrial impact at the Permian-Triassic boundary? Comment. Science 293, 2343.

    Google Scholar 

  • Fawcett, P.J. and Boslough, M.B.E. (2002) Climatic effects of an impact-induced equatorial debris ring. Journal of Geophysical Research 107, 10129–10146.

    Article  Google Scholar 

  • Firestone, R.B. and 25 others (2007) Evidence for an extraterrestrial impact 12,000 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences 104, 16016–16021.

    Article  ADS  Google Scholar 

  • Ganapathy, R. (1982) Evidence for a major meteorite impact on the earth 34 million years ago: implications for Eocene extinctions. Science 216, 885–886.

    Article  ADS  Google Scholar 

  • Glass, B.P., DuBois, D.L., and Ganapathy, R. (1982) Relationship between an iridium anomaly and the North American microtektite layer in core RC9-58 from the Caribbean Sea. Journal of Geophysical Research 87, 425–428.

    Article  Google Scholar 

  • Glikson, A.Y (2004) Comment on ‘Bedout: a possible end-Permian impact crater off northwestern Australia.’ Science 306, 613.

    Article  Google Scholar 

  • Glikson, A.Y, Mory, A.J., Iasky, R.P., Piranjno, F., Golding, S.D., and Uysal, I.T. (2005) Woodleigh, southern Carnarvon Basin, western Australia: history of discovery, late Devonian age, and geophysical and morphometric evidence for a 120km-diameter impact structure. Australian Journal of Earth Sciences 52, 545–553.

    Article  ADS  Google Scholar 

  • Hallam, A. (2004) Catastrophes and Lesser Calamities: The Causes of Mass Extinctions. Oxford University Press, Oxford.

    Google Scholar 

  • Hallam, A. and Wignall, P.B. (1997) Mass Extinctions and Their Aftermath. Oxford University Press, Oxford.

    Google Scholar 

  • Holtz, T. (2007) Dinosaurs out of thin air: phylogenetic perspectives on Ward’s atmosphere/evolution hypothesis. Journal of Vertebrate Paleontology 27 (supplement to no. 3), 91 A.

    MathSciNet  Google Scholar 

  • Huey, R.B. and Ward, P.D. (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. Science 308, 398–401.

    Article  ADS  Google Scholar 

  • Jin, Y., Wang, Y., Wang, W., Qinhua, S., Changqun, C., and Erwin, D.H. (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289, 432–436.

    Article  ADS  Google Scholar 

  • Keller, G. (2005) Impacts, volcanism, and mass extinction: random coincidence or cause and effect? Australian Journal of Earth Sciences 52, 725–757.

    Article  ADS  Google Scholar 

  • Keller, G. and MacLeod, N. (eds.) (1996) Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes. W.W. Norton, New York.

    Google Scholar 

  • Knoll, A.H., Bambach, R.K., Canfield, D.E., and Grotzinger, J.P. (1996) Comparative earth history and Late Permian mass extinction. Science 273, 452–457.

    Article  ADS  Google Scholar 

  • Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, B., and Sephton, M.A. (2004) Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology 32, 1053–1056.

    Article  ADS  Google Scholar 

  • Kump, L.R., Pavlov, A., and Arthur, M.A. (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397–400.

    Article  ADS  Google Scholar 

  • Lucas, S.G. (2005) Twenty-five years of mass extinctions and impacts. Geotimes 50(2), 28–32.

    Google Scholar 

  • Lucas, S.G. and Tanner, L.H. (2004) Late Triassic extinction events. Albertiana 31, 31–40.

    Google Scholar 

  • MacLeod, N., Rawson, P.F., Forey, P.L., Banner, F.T., Boudagher-Fedel, M.K., Bown, P.R., Burnett, J.A., Chambers, P., Culver, S., Evans, S.E., Jeffery, C., Kaminski, M.A., Lord, A.R., Milner, A.C., Milner, A.R., Morris, N., Owen, E., Rosen, B., Smith, A.B., Taylor, P.D., Urquhart, E., and Young, J.R. (1997) The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154, 265–292.

    Article  Google Scholar 

  • Masaitis, V., Mikhailov, M.V., and Selivanovskaya, T.V. (1975) Popigai Meteorite crater (in Russian). Nauka Press, Moscow, 124 p.

    Google Scholar 

  • Maurrasse, F. and Glass, B.P. (1976) Radiolarian stratigraphy and North American microtektites in Caribbean core RC9-58: implications concerning late Eocene radiolarian chronology and the age of the Eocene-Oligocene boundary. Caribbean Geological Conference Proceedings 7, 205–212.

    Google Scholar 

  • McGhee, G.R., Jr. (1996) The Late Devonian Mass Extinction. Columbia University Press, New York.

    Google Scholar 

  • McGhee, G.R., Jr. (2001) The ‘multiple impacts hypothesis’ for mass extinction: a comparison of the late Devonian and late Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 47–58.

    Article  Google Scholar 

  • Morrow, J.R. (2006) Impacts and mass extinctions revisited. PALAIOS 21, 313–315.

    Article  Google Scholar 

  • Officer, C. and Page, J. (1996) The Great Dinosaur Extinction Controversy. Perseus Books, New York.

    Google Scholar 

  • Olsen, P.E., Shubin, N.H., and Ander, M.H. (1987) New early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science 237, 1025–1029.

    Article  ADS  Google Scholar 

  • Olsen, P.E., Kent, D.V., Sues, H.-D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E.C., Fowell, S.J., Szajna, M.J., and Hartline, B.W. (2002a) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296, 1305–1307.

    Article  ADS  Google Scholar 

  • Olsen, P.E., Koeberl, C., Huber, H., Montanari, A., Fowell, S.J., Et-Touhani, M., and Kent, D.V. (2002b) Continental Triassic-Jurassic boundary in central Pangea: recent progress and discussion of an iridium anomaly. Geological Society of America Special Paper 356, 505–522.

    Google Scholar 

  • Pinter, N. and Ishman, S.E. (2008) Impacts, mega-tsunami, and other extraordinary claims. GSA Today 18(1), 37–38.

    Article  Google Scholar 

  • Poag, C.W. (1997) Roadblocks on the kill curve: testing the Raup hypothesis. PALAIOS 12, 582–590.

    Article  Google Scholar 

  • Poag, C.W. (1999) Chesapeake Invader. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Poag, C.W, Powars, D.S., Poppe, L.J., Mixon, R.B., Edwards, L.E., Folger, D.W., and Bruce, S. (1992) Deep Sea Drilling Project Site 612 bolide event: new evidence of late Eocene impacts-wave deposits and a possible impact site, U.S. east coast. Geology 20, 771–774.

    Article  ADS  Google Scholar 

  • Poag, C.W., Mankinen, E., and Norris, R.D. (2003) Late Eocene impacts: geologic record, correlation, and paleoenvironmental consequences. In: D.R. Prothero, L.C. Ivany and E.A. Nesbitt (eds.), From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition. Columbia University Press, New York, pp. 495–510.

    Google Scholar 

  • Prothero, D.R. (1994) The Eocene-Oligocene Transition: Paradise Lost. Columbia University Press, New York.

    Google Scholar 

  • Prothero, D.R. (1999) Does climatic change drive mammalian evolution? GSA Today 9(9), 1–5.

    Google Scholar 

  • Prothero, D.R. (2004a) Bringing Fossils to Life: An Introduction to Paleobiology (2nd ed.). WCB/McGraw-Hill, New York.

    Google Scholar 

  • Prothero, D.R. (2004b) Did impacts, volcanic eruptions, or climatic change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214, 283–294.

    Google Scholar 

  • Prothero, D.R. (2006) After the Dinosaurs: The Age of Mammals. Indiana University Press, Bloomington, IN.

    Google Scholar 

  • Prothero, D.R. and Berggren, W.A. (eds.) (1992) Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Prothero, D.R., Ivany, L.C., and Nesbitt, E.A. (eds.) (2003) From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition. Columbia University Press, New York.

    Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1984) Terrestrial mass extinctions, cometary impacts, and the sun’s motion perpendicular to the galactic plane. Nature 308, 709–712.

    Article  ADS  Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1988) Flood basalt volcanism during the past 250 million years. Science 241, 663–668.

    Article  ADS  Google Scholar 

  • Raup, D.M. (1986) The Nemesis Affair: The Story of the Death of Dinosaurs and the Ways of Science. W.W. Norton, New York.

    Google Scholar 

  • Raup, D.M. (1991) Extinction: Bad Genes or Bad Luck? W.W. Norton, New York.

    Google Scholar 

  • Raup, D.M. and Sepkoski, J.J., Jr. (1984) Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences 81, 805–801.

    Article  ADS  Google Scholar 

  • Raup, D.M. and Sepkoski, J.J., Jr. (1986) Periodicity of extinctions of families and genera. Science 231, 833–836.

    Article  ADS  Google Scholar 

  • Reimhold, W.U., Kelley, S.P., Sherlock, S.C., Henkel, H., and Koeberl, C. (2005) Laser argon dating of melt breccias from the Siljan impact structure, Sweden: implications for a possible relationship to Late Devonian extinction events. Meteoritics and Planetary Science 40, 591–607.

    Article  ADS  Google Scholar 

  • Retallack, G.J. and Jahren, A.H. (2008) Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology 116, 1–20.

    Article  ADS  Google Scholar 

  • Retallack, G.J., Seyedolali, A., Krull, E.S., Holser, W.T., Ambers, C.P., and Kyte, F.T. (1998) Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology 26, 979–982.

    Article  ADS  Google Scholar 

  • Robertson, D.S., McKenna, M.C., Toon, O.B., Hope, S., and Lillegraven, J.A. (2004) Survival in the first hours of the Cenozoic. Geological Society of America Bulletin 116, 760–768.

    Article  Google Scholar 

  • Rohde, R.A. and Muller, R.A. (2005) Cycles in fossil diversity. Nature 434, 208–210.

    Article  ADS  Google Scholar 

  • Schwartz, R.D. and James, P.B. (1984) Periodic mass extinctions and the sun’s oscillation around the galactic plane. Nature 308, 712–713.

    Article  ADS  Google Scholar 

  • Sepkoski, J.J., Jr. (1981) A factor analytic description of the Phanerozoic marine record. Paleobiology 7, 36–53.

    Google Scholar 

  • Signor, P.W, III and Lipps, J.H. (1982) Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geological Society of America Special Paper 190, 291–296.

    Google Scholar 

  • Stanley, S.M. (1990) Delayed recovery and the spacing of major extinctions. Paleobiology 16, 401–414.

    Google Scholar 

  • Tanner, L.H., Lucas, S.G., and Chapman, M.G. (2003) Assessing the record and causes of Late Triassic extinctions. Earth Science Reviews 65, 103–139.

    Article  ADS  Google Scholar 

  • Vonhof, H.B., Smit, J., Brinkhuis, H., Montanari, A., and Nederbracht, A.J. (2000) Global cooling accelerated by early-late Eocene impacts? Geology 28, 687–690.

    Article  ADS  Google Scholar 

  • Ward, P.D. (2006a) Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere. Joseph Henry Press, Washington, DC.

    Google Scholar 

  • Ward, P.D. (2006b) Impact from the deep. Scientific American 295(4), 64–71.

    Article  Google Scholar 

  • Ward, P.D. (2007) Under a Green Sky. Smithsonian Books, Washington, DC.

    Google Scholar 

  • Weil, A. (1984) Acid rain as an agent of extinction at the K/T boundary—NOT! Journal of Vertebrate Paleontology 14(3), 51A.

    Google Scholar 

  • White, R.V. and Saunders, A.D. (2005) Volcanism, impact, and mass extinctions: incredible or credible coincidences? Lithos 79, 299–316.

    Article  ADS  Google Scholar 

  • Whitmire, D.P. and Jackson, A.A., IV (1984) Are periodic mass extinctions driven by a distant solar companion? Nature 308, 713–715.

    Article  ADS  Google Scholar 

  • Whitmire, D.P. and Jackson, A.A., IV (1985) Periodic comet showers and Planet X. Nature 313, 36–38.

    Article  ADS  Google Scholar 

  • Wignall, P.B., Thomas, B., Willink, R., and Watling, J. (2004) The Bedout crater—no sign of impact. Science 306, 609.

    Article  Google Scholar 

  • Zhou, L. and Kyte, F.T. (1988) The Permian-Triassic boundary event: a geochemical study of three Chinese sections. Earth and Planetary Sciences Letters 90, 411–421.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Prothero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Prothero, D.R. (2009). Do Impacts Really Cause Most Mass Extinctions?. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_20

Download citation

Publish with us

Policies and ethics