Skip to main content

Water Influence on Mechanical Behaviour of Pavements: Constitutive Modelling

  • Chapter
Water in Road Structures

Abstract

This chapter deals with the effects of water on the mechanical behaviour of pavements. The analysis is based on constitutive considerations. Constitutive models devoted to both routine and advanced pavement analysis and design are introduced and both the resilient behaviour as well as the long term elasto-plastic approaches are presented. As soon as the approach considers the material as a two phase (solid matrix and a fluid), the introduction of the effective stress concept is required. In the last section an analysis is made on the extension of the constitutive models to the characterisation of partially saturated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelkrim, M., De Buhan, P. & Bonnet G., 2003, “A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading”, Comput. Geotech., 30 pp. 463–476.

    Article  Google Scholar 

  • Allou, F., Chazallon, C., Hornych, P., 2007, “A numerical model for flexible pavements rut depth evolution with time”, Int. J. Numer. Anal. Methods Geomech., 31, pp. 1–22.

    Article  Google Scholar 

  • Alonso, E. E., Gens, A. & Josa, A. 1990, “A constitutive model for partially saturated soils”, Géotechnique, 40(3), pp. 405–430.

    Google Scholar 

  • Amadeus Project, 2000, “Advanced Models for Analytical Design of European Pavement Structures”, Final report, European Commission.

    Google Scholar 

  • ARA Inc, 2004, “Guide for the Mechanistic-Empirical Design of New and Rehabilitated pavement Structures”, Final Report No 1-37A, Part 2, “Design Inputs”, Chapter\ref{ch03:chap03} “Environmental Effects”, March,50pp.

    Google Scholar 

  • Arnold, G., Hughes, D.A.B., Dawson, A.R. & Robinson, D., 2003, “Design of granular pavements”, Transport. Res. Board, 1819, 2, pp. 194–200.

    Google Scholar 

  • Barksdale, RD., 1972, “Laboratory Evaluation of Rutting in base Course Materials”, Proc. 3rd Int. Conf. Structural Design of Asphalt Pavements, London, pp. 161–174.

    Google Scholar 

  • Biarez, J., 1961, “Contribution à l’étude des propriétés mécanique des sols et des matériaux pulvérulents”, PhD Thesis, Faculty of Sciences, University of Grenoble, France.

    Google Scholar 

  • Bishop, A.W., 1959, “The principle of effective stress”, Tecknisk Ukelbad, 39, pp. 859–863.

    Google Scholar 

  • Bishop, A.W. & Blight, G.E., 1963, “Some aspects on effective stress in saturated and partly saturated soils”, Géotechnique, 13(3), pp. 177–197.

    Article  Google Scholar 

  • Bonaquist, R.F. & Witczak, M.W., 1997, “A comprehensive constitutive model for granular materials in flexible pavements structures”, Proc. 8th Int. Conf. Asphalt Pavements, Seattle, U.S.A., pp. 783–802.

    Google Scholar 

  • Boyce, JR., 1980, “A non-linear model for elastic behaviour of granular materials under repeated loading”, Proc. Int. Symp. Soils under Cyclic and Transient Loading, Swansea, pp. 280–294

    Google Scholar 

  • CEN, 2000, “Unbound and hydraulically bound mixtures– Part 7: Cyclic load triaxial test for unbound mixtures”, European standard EN 13286-7, Comité Européen de Normalisation.

    Google Scholar 

  • Chazallon C., Hornych P. & Mouhoubi S., 2006, “An elasto-plastic model for the long term behaviour modelling of unbound granular materials in flexible pavements”, Int. J. of Geomech., Am. Soc. Civil Eng., 6(4), pp. 279–289.

    Google Scholar 

  • Collins, I.F. & Boulbibane, M., 2000, “Geomechanical analysis of unbound pavements based on shakedown theory”, J. Geotech. Geoenviron. Eng, Am. Soc. Civil Eng’rs., 126(1) pp. 50–59.

    Google Scholar 

  • Dawson, A.R. & Kolisoja, P., 2004, “Permanent deformation”, Report to ROADEX II project, Highland Regional Council, 47pp. Available at www.roadex.org.

  • Desai, C.S., 2002, “Mechanistic Pavement Analysis and Design using Unified Material and Computer Models”, Proc., 3rd Int. Symp.3D Finite Elements for Pavement Analysis, Amsterdam, The Netherlands, pp. 1–63.

    Google Scholar 

  • Desai, C.S., and Somasundaram, S. & Frantziskonis, G., 1986, “A hierarchical approach for constitutive modelling of geologic materials”, Int J. Numer. Anal. Methods Geomech., 10(3), pp. 225–257.

    Google Scholar 

  • Ekblad, J., 2004, “Influence of water on resilient properties of coarse granular materials”, Licentiate thesis, Civil and Architectural Engineering”, Royal Inst. Technology (KTH), Stockholm,107pp.

    Google Scholar 

  • Elhannani, M., 1991, “Modélisation et Simulation Numérique des Chaussées Souples”, PhD Thesis, University of Nantes, France.

    Google Scholar 

  • Fredlund D.G. & Morgenstern, N.R., 1977, “Stress state variables for unsaturated soils”. J.Geotech. Eng., Am. Soc. Civil Eng., 5, pp 447–465.

    Google Scholar 

  • Gidel, G., Hornych, P., Chauvin, J-J., Breysse, D. & Denis A., 2001, “Nouvelle approche pour l’étude des déformations permanentes des graves non traitées à l’appareil triaxial à chargement répétés”, Bulletin de liaison des Laboratoire des Ponts et Chaussées, pp. 5–22.

    Google Scholar 

  • Habiballah, T.M. & Chazallon, C., 2005, “Cyclic plasticity based model for the unbound granular materials permanent strains modelling of flexible pavements”, Int. J. Numer. Anal. Methods Geomech., 29(6), pp. 577–596.

    Article  Google Scholar 

  • Hicks, R.G. & Monismith, C.L., 1971, “Factors influencing the resilient response of granular materials”, Highways Research Record, No. 345, Highways Research Board, pp. 15–31.

    Google Scholar 

  • Hornych, P., Chazallon, C., Allou, F. & El Abd, A., 2007, “Prediction of Permanent Deformations of Unbound Granular Materials in Low Traffic Pavements”, Int. J. Road Mater. Pavement Des., 8(4), pp. 643–666.

    Article  Google Scholar 

  • Hornych, P., Corte J.F. & Paute, J.L., 1993, “Etude des déformations permanentes sous chargements répétés de trois graves non traitées”. Bulletin de liaison des Laboratoires des Ponts et Chaussées, Presse de l’ENPC, Paris, France, No 184, pp. 45–55.

    Google Scholar 

  • Hornych, P., Kazai, A. & Piau, JM., 1998, “Study of the resilient behaviour of unbound granular materials”, Proc. Bearing Capacity Roads, Railways & Airfields, 1998, Trondheim, 3, pp. 1277–1287

    Google Scholar 

  • Hujeux J.C., 1985, “Une loi de comportement pour le chargement cyclique des sols”, in Génie Parasismique, Presses des Ponts et Chaussées, Paris, pp. 316–331.

    Google Scholar 

  • Khalili, N. & Khabbaz, M.H., 1998, “A unique relationship for the determination of the shear strength of unsaturated soils”, Géotechnique, 48(5), pp. 681–687.

    Google Scholar 

  • Khalili N., Witt, R., Laloui, L., Vulliet, L. & Koliji, A., 2005, “Effective stress in double porous media with two immiscible fluids”, Geophy. Res. Lett., 32(15), L15309.

    Article  Google Scholar 

  • Laloui L., Geiser, F. & Vulliet, L., 2001, “Constitutive modeling of unsaturated soils”, Revue française de génie civil, 5, pp. 797–807.

    Article  Google Scholar 

  • Laloui, L., Klubertanz, G. & Vulliet, L., 2003, “Solid-liquid-air coupling in multiphase porous media”, Int. J. Numer. Anal. Methods Geomech., 27(3), 183–206.

    Article  Google Scholar 

  • Lashine, AK., Brown, SF., Pell, PS., 1971, “Dynamic properties of soils”, Dept. Civil Eng’g., University of Nottingham.

    Google Scholar 

  • Lekarp, F. & Dawson, A., 1998, “Modelling permanent deformation behaviour of UGM”., Construction and Building Materials, 12(1), pp. 9–18.

    Google Scholar 

  • Long, X., Aubeny, C.P., Rifat, B. & Lytton, R.L., 2006, “Two-dimensional moisture flow– soil deformation model for application to pavement design”, Transport. Res. Rec., 1967, pp. 121–131.

    Article  Google Scholar 

  • Maier, G., Pastor, J., Ponter, A.R.S. & Weichert, D., 2003, “Direct methods of limit and shakedown analysis”, Numerical & Computational Methods, Chapter\ref{chap12} in volume 3, R. de Borst and H.A. Mang, (eds.), Elsevier-Pergamon, Amsterdam.

    Google Scholar 

  • Mayoraz F., 2002, “Comportement mécanique des milieux granulaires sous sollicitations cycliques: Application aux fondations des chaussées souples”, Ph. D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

    Google Scholar 

  • Pan, T., Tutumluer, E. & Anochie-Boateng, J., 2006, “Aggregate Morphology Affecting Resilient Behavior of Unbound Granular Materials”, Transport. Res. Rec., 1952, Transportation Research Board, Washington, DC, pp. 12–20.

    Google Scholar 

  • Paute, J.L., Jouve, P., Martinez, P. & Regneau, E., 1988, “Modèle de calcul pour le dimensionnement des chaussées souples“, Bulletin de liaison des Laboratoire des Ponts et Chaussées, 156, pp. 21–36.

    Google Scholar 

  • Perzyna, P., 1966, “Fundamental problems in viscoplasticity”, Rec. Adv. Appl. Mech., 9, pp. 243–377.

    Google Scholar 

  • Seyhan, U., Tutumluer, E., & Yesilyurt, H., 2005, “Anisotropic aggregate base inputs for mechanistic pavement analysis considering effects of moving wheel loads,” J. Mater. Civil Eng, Am. Soc. Civil Eng’rs., 17(5), October, pp. 1–8.

    Google Scholar 

  • Sharp, RW. & Booker, JR., 1984, “Shakedown of Pavements under Moving Surface Loads”, J.Transport. Eng., Am. Soc. Civil Eng’rs., 110(1), pp. 1–14.

    Google Scholar 

  • Suiker, A.S.J. & de Borst R., 2003, “A numerical model for cyclic deterioration of railways tracks”, Int. J. Numer. Methods Eng., 57(4), pp. 441–470.

    Article  Google Scholar 

  • Terzaghi K., 1943. “Theoretical soil mechanics”, Chapman and Hall, London.

    Google Scholar 

  • Wong, S.K., Kapoor, A. & Williams, J.A., 1997, “Shakedown limits on coated and engineered surfaces”, Wear, 203–204, pp. 162–170.

    Article  Google Scholar 

  • Yu H.S., 2005. Special issue on the Shakedown theory, Int. J. Road Mater. Pavement Des.,6(1), pp. 1–134.

    Google Scholar 

  • Yu, H.S., & Hossain, M.Z., 1998, “Lower bound shakedown analysis of layered pavements discontinuous stress fields”, Comput. Methods Appl. Mech. Eng., 167, pp. 209–222.

    Article  Google Scholar 

  • Zarka, J. & Casier, J., 1979, “Elastic plastic response of structure to cyclic loading: practical rules”, Mechanics Today, 6, Ed Nemat-Nasser, Pergamon Press, pp. 93–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laloui, L. et al. (2009). Water Influence on Mechanical Behaviour of Pavements: Constitutive Modelling. In: Dawson, A. (eds) Water in Road Structures. Geotechnical, Geological and Earthquake Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8562-8_9

Download citation

Publish with us

Policies and ethics