Skip to main content

Part of the book series: Integrated Management of Plant Pests and Diseases ((IMPD,volume 2))

Abstract

Biofumigation is a sustainable strategy to manage soil-borne pathogens, nematodes, insects, and weeds. Initially it was defined as the pest suppressive action of decomposing Brassica tissues, but it was later expanded to include animal and plant residues. Most data on the efficacy of biofumigation are from in vitro studies using fungal pathogens. Biofumigation also attracted the interest of nematologists, and research on the potential of this method to manage plant-parasitic nematodes is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, J. F., Gardner, P. A., Kirkegaard, J. A., & Desmarchelier, J. M. (1994). Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant and Soil, 162, 107–112.

    Article  CAS  Google Scholar 

  • Bello, A. (1998). Biofumigation and integrated crop management. In A. Bello, J. A. González, M. Arias, & R. Rodríguez-Kábana (Eds.), Alternatives to methyl bromide for the Southern European countries(pp. 99–126). Valencia, Spain: Phytoma-España, DG XI EU, CSIC.

    Google Scholar 

  • Bello, A., López-Pérez, J. A., & Díaz-Viruliche, L. (2000a). Biofumigación y solarización como alternativas al bromuro de metilo. In J. Z. Castellanos & F. Guerra O’Hart (Eds.), Memorias del Simposium Internacional de la Fresa (pp. 24–50), Zamora, INCAPA, Celaya, Guanajuato, México.

    Google Scholar 

  • Bello, A., López-Pérez, J. A., Sanz, R., Escuer, M., & Herrero, J. (2000b). Biofumigation and organic amendments. Regional workshop on methyl bromide alternatives for North Africa and Southern European countries (pp. 113–141). Paris, France: United Nations Environment Program (UNEP).

    Google Scholar 

  • Bello, A., López-Pérez, J. A., García-Álvarez, A., Sanz, R., & Lacasa, A. (2004). Biofumigation and nematode control in the Mediterranean region. In R. C. Cook & D. J. Hunt (Eds.), Proceedings of the fourth international congress of nematology, 8–13 June, 2002, Tenerife, Spain. Nematology monographs and perspectives Vol. 2 pp. 133–149) Leiden and Boston: Brill.

    Google Scholar 

  • Bending, G. D., & Lincoln, S. D. (1999). Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biology and Biochemistry, 31, 695–703.

    Article  CAS  Google Scholar 

  • Bridge, J. (1996). Nematode management in sustainable and subsistence agriculture. Annual Review of Phytopathology, 34, 201–225.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. Advances in Agronomy, 61, 167–231.

    Article  CAS  Google Scholar 

  • Brown, P. D., Morra, M. J., McCaffrey, J. P., Auld, D. L., & Williams, L. W. (1991). Allelochemicals produced during glucosinolate degradation in soil. Journal of Chemical Ecology, 17, 2021–2034.

    Article  CAS  Google Scholar 

  • Charron, C. S., & Sams, C. E. (1999). Inhibition of Pythium ultimum and Rhizoctonia solani by shredded leaves of Brassica species. Journal of the American Society of Horticultural Sciences, 124, 462–467.

    CAS  Google Scholar 

  • Cole, R. A. (1976). Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry, 15, 759–762.

    Article  CAS  Google Scholar 

  • Curto, G., Lazzeri, L., Dallavalle, E., Santi, R., & Malaguti, L. (2006). Effectiveness of crop rotation with Brassicaceae species for the management of the southern root-knot nematode Meloidogyne incognita. Abstracts of the second international biofumigation symposium (p. 51). June 25–29, Moscow, Idaho.

    Google Scholar 

  • Fenwick, G. R., Heaney, R. K., & Mullin, W. J. (1983). Glucosinolates and their breakdown products in food and food plants. In T. E. Furia (Ed.), Critical reviews in food science and nutrition(pp. 123–201). Boca Raton: CRC Press.

    Google Scholar 

  • Gardiner, J., Morra, M. J., Eberlein, C. V., Brown, P. D., & Borek, V. (1999). Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. Journal of Agriculture and Food Chemistry, 47, 3837–3842.

    Article  CAS  Google Scholar 

  • Hafez, S. L., & Sundararaj, P. (2004). Biological and chemical management strategies in the sugarbeet cyst nematode management. Proceedings of the Winter Commodity Schools-2004, University of Idaho, USA, pp. 243–248.

    Google Scholar 

  • Halbrendt, J. M. (1996). Allelopathy in the management of plant-parasitic nematodes. Journal of Nematology, 28, 8–14.

    PubMed  CAS  Google Scholar 

  • Harvey, S. G., Hannahan, H., & Sams, C. E. (2002). Indian mustard and allyl isothiocyanate inhibit Sclerotium rolfsii. Journal of the American Society of Horticultural Sciences, 127, 27–31.

    CAS  Google Scholar 

  • Hoitink, H. A. (1988). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24, 93–114.

    Article  Google Scholar 

  • Kirkegaard, J. A., & Sarwar, M. (1998). Biofumigation potential of brassicas. Plant and Soil, 201, 71–89.

    Article  CAS  Google Scholar 

  • Kirkegaard, J. A., & Sarwar, M. (1999). Glucosinolate profiles of Australian canola (Brassica napus annua L.) and Indian mustard (Brassica juncea L.) cultivars: implications for biofumigation. Australian Journal of Agricultural Research, 50, 315–324.

    Article  CAS  Google Scholar 

  • Kirkegaard, J. A., Angus, J. F., Gardner, P. A., & Cresswell, H. P. (1993a). Benefits of Brassica break crops in the Southeast wheat belt. Proceedings of the 7th Australian agronomy conference, Adelaide, Australia (pp. 282–285).

    Google Scholar 

  • Kirkegaard, J. A., Gardner, P. A., Desmarchelier, J. M., & Angus, J. F. (1993b). Biofumigation – using Brassica species to control pests and diseases in horticulture and agriculture. In N. Wratten & R. Mailer (Eds.), Proceedings of the 9th Australian assembly on brassicas. Wagga Wagga, 5–7 October, (pp. 77–82).

    Google Scholar 

  • Lazarovits, G., Tenuta, M., & Conn, K. L. (2001). Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australasian Plant Pathology, 30, 111–117.

    Article  Google Scholar 

  • Lazzeri, L., & Manici, L. M. (2001). Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp. and total fungal population in soil. HortScience, 36, 1283–1289.

    CAS  Google Scholar 

  • López-Pérez, J. A., Roubtsova, T., de Cara-García, M., & Ploeg, A. T. (2008). Rotation and biofumigation with five winter-growen crops and subsequent root-knot nematode infestation and yield of summer-grown tomato. Agriculture, Ecosystems and Environment, 123, (in press).

    Google Scholar 

  • Manici, L. A., Lazzeri, L., Baruzzi, G., Leoni, O., Galletti, S., & Palmieri, S. (2000). Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Management Science, 56, 921–926.

    Article  CAS  Google Scholar 

  • Matthiessen, J. N., & Kirkegaard, J. A. (1993). Biofumigation, a new concept for ‘clean and green’ pest and disease control. Western Australian Potato Grower, October issue, 14–15.

    Google Scholar 

  • Matthiessen, J. N., Warton, B., & Shackleton, M. A. (2004). The importance of plant maceration and water addition in achieving high Brassica-derived isothiocyanate levels in soil. Agroindustria, 3, 277–280.

    Google Scholar 

  • McLeod, R. W., & Steel, C. C. (1999). Effects of brassica-leaf green manures and crops on activity and reproduction of Meloidogyne javanica. Nematology, 1, 613–624.

    Article  Google Scholar 

  • McLeod, R. W., Kirkegaard, J. A., & Steel, C. C. (2001). Invasion, development, growth and egg laying by Meloidogyne javanica in Brassicaceae crops. Nematology, 3, 463–472.

    Article  Google Scholar 

  • Mcleod, R., & Warren, M. (1993). Effects of covercrops on inter-row nematode infestation in vineyards. 1. Relative increase of root knot nematode Meloidogyne incognita and M. javanicaon legume, cereal and brassica crops. The Australian Grapegrower and Winemaker, 357, 28–30.

    Google Scholar 

  • McSorley, R., & Frederick, J. J. (1995). Responses of some common Cruciferae to root-knot nematodes. Journal of Nematology, 27, 550–554.

    PubMed  CAS  Google Scholar 

  • Melakeberhan, H., Xu, A., Kravchenko, A., Mennan, S., & Riga, E. (2006). Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology, 8, 793–799.

    Article  Google Scholar 

  • Mojtahedi, H., Santo, G. S., Hang, A. N., & Wilson, J. H. (1991). Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. Journal of Nematology, 23, 170–170.

    PubMed  CAS  Google Scholar 

  • Mojtahedi, H., Santo, G. S., Wilson, J. H., & Hang, A. N. (1993). Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Disease, 77, 42–46.

    Article  Google Scholar 

  • Morra, M. J., & Kirkegaard, J. A. (2002). Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biology and Biochemistry, 34, 1683–1690.

    Article  CAS  Google Scholar 

  • MBTOC (1997). Report of the Methyl Bromide Technical Options Committee. Nairobi, Kenya, UNEP, 221pp.

    Google Scholar 

  • Muller, J. (1999). The economic importance of Heterodera schachtii in Europe. Helminthologia, 36, 205–213.

    Google Scholar 

  • Mus, A., & Huygen, C. (1992). Methyl Bromide. The Dutch Environmental Situation and Policy. TNO. Institute of Environmental Sciences. order No. 50554. 13pp.

    Google Scholar 

  • Pattison, A. B., Versteeg, C., Akiew, S., & Kirkegaard, J. (2006). Resistance of Brassicaceae plants to root-knot nematode (Meloidogyne spp.) in northern Australia. International Journal of Pest Management, 52, 53–62.

    Article  Google Scholar 

  • Ploeg, A. T., & Stapleton, J. J. (2001). Glasshouse studies on the effects of time, temperature and amendment of soil with broccoli plant residues on the infestation of melon plants by Meloidogyne incognita and M. javanica. Nematology, 3, 855–861.

    Article  Google Scholar 

  • Potter, M. J., Davies, K., & Rathjen, A. J. (1998). Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. Journal of Chemical Ecology, 24, 67–80.

    Article  CAS  Google Scholar 

  • Potter, M. J., Vanstone, V., Davies, K., Kirkegaard, J., & Rathjen, A. (1999). Reduced susceptibility of Brassica napus to Pratylenchus neglectus in plants with elevated root concentrations of 2-phenylethyl glucosinolate. Journal of Nematology, 31, 291–298.

    PubMed  CAS  Google Scholar 

  • Potter, M. J., Vanstone, V. A., Davies, K. A., & Rathjen, A. J. (2000). Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. Journal of Chemical Ecology, 26, 1811–1820.

    Article  CAS  Google Scholar 

  • Poulton, J. E., & Moller, B. L. (1993). Glucosinolates. In P. J. Lea (Ed.), Methods in plant biochemistry (Vol. 9, pp. 209–237), London: Academic Press.

    Google Scholar 

  • Price, A. (1999). Quantification of volatile compounds produced during simulated biofumigation utilizing Indian mustard degrading in soil under different environmental conditions, MS Thesis. University of Tennessee, Knoxville.

    Google Scholar 

  • Riga, E., & Wilson, J. (2006). New nematode management issues and options in Washington state. Journal of Nematology, 38, 289.

    Google Scholar 

  • Riga, E., Mojtahedi, H., Ingham, R., & McGuire, A. (2004). Green manure amendments and management of root-knot nematodes on potato in the Pacific North West of USA. In R. C. Cook & D. J. Hunt (Eds.), Proceedings of the Fourth International Congress of Nematology, June 8–13, 2002, Tenerife, Spain. Nematology Monographs and Perspectives (Vol. 2, pp. 151–158). Leiden and Boston: Brill.

    Google Scholar 

  • Riga, E., Pierce, F., & Collins, H. (2006). The use of arugula on its own and in combination with synthetic nematicides against plant parasitic nematodes of potatoes. Abstracts of the Second International Biofumigation Symposium, June 25–29, Moscow, Idaho, US, 42.

    Google Scholar 

  • Rodríguez-Kábana, R. (1997). Alternatives to methyl bromide (MB) soil fumigation. In A. Bello, J. A. González, M. Arias, & R. Rodríguez-Kábana (Eds.), Alternatives to methyl bromide for the Southern European countries (pp. 17–33). Valencia, Spain,.

    Google Scholar 

  • Rosa, E. A. S., Heaney, R. K., Fenwich, G. R., & Portas, C. A. M. (1997). Glucosinolates in crop plants. Horticultural Reviews, 19, 99–215.

    CAS  Google Scholar 

  • Roubtsova, T., López-Pérez, J. A., Edwards, S., & Ploeg, A. T. (2007). Effect of broccoli (Brassica oleracea) tissue, incorporated at different depths in a soil column, on Meloidogyne incognita. Journal of Nematology, 39, (in press).

    Google Scholar 

  • Sang, J. P., Minchinton, I. R., Johnstone, P. K., & Truscott, R. J. W. (1984). Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Canadian Journal of Plant Science, 64, 77–93.

    Article  CAS  Google Scholar 

  • Sasser, J. N., & Freckman, D. W. (1987). A world perspective of nematology: the role of the Society. In Veech, J. A. & Dickson, D. W. (Eds.), Vistas on Nematology (pp. 7–14). Hyattsville, MD: Society of Nematology.

    Google Scholar 

  • Stapleton, J. J., & Duncan, R. A. (1998). Soil disinfestation with cruciferous amendments and sublethal heating: effects on Meloidogyne incognita, Sclerotium rolfsii and Pythium ultimum. Plant Pathology, 47, 737–742.

    Google Scholar 

  • Stirling, G. R. (1991). Biological control of plant-parasitic nematodes: progress, problems and prospects. Wallingford, UK: CAB International.

    Google Scholar 

  • Stirling, G. R., & Stirling, A. M. (2003). The potential of Brassica green manure crops for controlling root-knot nematode (Meloidogyne javanica) on horticultural crops in a subtropical environment. Australian Journal of Experimental Agriculture, 43, 623–630.

    Article  Google Scholar 

  • Tsror, L., Lebiush, S., Meshulam, M., Matan, E., & Lazzeri, L. (2006). Biofumigation for controlling soilborne diseases of tomato, potato and olive. Abstracts of the second international biofumigation symposium (p. 46). June 25–29, Moscow, Idaho.

    Google Scholar 

  • Underhill, E. W. (1980). Glucosinolates. In E. A. Bell & B. V. Charlwood (Eds.), Secondary plant products. Encyclopedia of Plant Physiology, New Series (Vol. 8, pp. 493–511). Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ploeg, A. (2008). Biofumigation To Manage Plant-Parasitic Nematodes. In: Ciancio, A., Mukerji, K.G. (eds) Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. Integrated Management of Plant Pests and Diseases, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6063-2_12

Download citation

Publish with us

Policies and ethics