Skip to main content

Silicon in Plant Nutrition

Effects on zinc, manganese and boron leaf concentrations and compartmentation

  • Chapter
The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions

Abstract

Silicon (Si), taken up as Si(OH)4 by plants, is transported and deposited mainly in the apoplast since Si transport and distribution follows that of water. This makes it rather likely that it influences the physical and chemical properties of the apoplast. In order to investigate the effect of Si on the properties of the leaf apoplast, mineral concentrations and binding forms of ions in the cell walls and intercellular washing fluid were determined. Three mineral element/silicon interactions were the focus of our study: a) the influence of Si on phosphate-induced zinc deficiency, b) effects of Si on exchange capacity and binding forms of manganese in the leaf apoplast and c) silicon/boron interactions. Silicon was shown to influence in particular the compartmentation of zinc, boron, and manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adatia, M.H. and Besford, R.T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot., 58, 343–351.

    CAS  Google Scholar 

  • Ahmad, R., Zaheer, S.H. and Ismail, S. (1992). Role in silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci., 85, 43–50.

    Article  CAS  Google Scholar 

  • Barber, D.A. and Shone, M.G.T. (1966). The absorption of silica from aqueous solutions by plants. J. Exp. Bot., 17, 569–578.

    Article  CAS  Google Scholar 

  • Barceló, J., Guevara, P. and Poschenrieder, C. (1993). Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant Soil, 154, 249–255.

    Article  Google Scholar 

  • Bergmann, W. (1988). Ernährungsstörungen bei Kulturpflanzen. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Blaich, R. and Grundhofer, H. (1998). Silicate incrusts induced by powdery mildew in cell walls of different plant species. Z. Pflanzenkr. Pflanzenschutz, 105, 114–120.

    CAS  Google Scholar 

  • Bode, E., Kozik, S., Kunz, U. and Lehmann, H. (1994). Vergleichende elektronenmikroskopische Untersuchungen zur Lokalisation von Silizium in Blättern zweier verschiedener Gräserarten. Dtsch. Tierärztl. Wschr., 101, 367–372.

    CAS  Google Scholar 

  • Bowen, J.E. (1972). Manganese-silicon interaction and its effect on growth of Sudan grass. Plant Soil, 37, 577–588.

    Article  CAS  Google Scholar 

  • Brown, P.H. and Hu, H. (1994). Boron uptake by sunflower, squash and cultured tobacco cells. Physiol. Plant., 91, 435–441.

    Article  CAS  Google Scholar 

  • Brown, P.H., Bellaloui, N., Hu, H. and Dandekar, A. (1999). Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol., 119, 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. and Marschner, H. (1986). Mechanism of phosphorus-induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus. Physiol. Plant., 68, 483–490.

    Article  CAS  Google Scholar 

  • Cakmak, I. and Marschner, H. (1987). Mechanism of phosphorus-induced zinc deficiency in cotton III. Changes in physiological availability of zinc in plants. Physiol. Plant., 70, 13–20.

    Article  CAS  Google Scholar 

  • Cocker, K.M., Evans, D.E. and Hodson, M.J. (1998a). The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiol. Plant., 104, 608–614.

    Article  CAS  Google Scholar 

  • Cocker, K.M., Evans, D.E. and Hodson, M.J. (1998b). The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.) – malate exudation as evidence for an in planta mechanism. Planta, 204, 318–323.

    Article  CAS  Google Scholar 

  • Cocker, K.M., Hodson, M.J., Evans, D.E. and Sangster, A.G. (1998c). Interaction between silicon and aluminium in Triticum aestivum L. (cv. Celtic). Israel J. Plant. Sci., 45, 285–292.

    Google Scholar 

  • Corrales, I., Poschenrieder, C. and Barceló, J. (1997). Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil, 190, 203–209.

    Article  CAS  Google Scholar 

  • Dannel, F., Pfeffer, H. and Römheld, V. (1998) Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. J. Plant Physiol., 153, 615–622.

    CAS  Google Scholar 

  • Dannel, F., Pfeffer, H. and Römheld, V. (2002) Update on boron in higher plants–Uptake, primary translocation and compartmentation. Plant Biol., 4, 193–204.

    Article  CAS  Google Scholar 

  • El-Jaoual, T. and Cox, D.A. (1998). Manganese toxicity in plants. J. Plant Nutr., 21, 353–386.

    Article  CAS  Google Scholar 

  • Epstein, E. (1994). The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA, 91, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E. (1999). Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 641–664.

    Article  PubMed  CAS  Google Scholar 

  • Galvez, L., Clark, R.B., Gourley, L.M. and Maranville, J.W. (1987). Silicon interactions with manganese and aluminium toxicity in sorghum. J. Plant Nutr., 10, 1139–1147.

    CAS  Google Scholar 

  • Galvez, L,, Clark, R.B., Gourley, L.M. and Maranville, J.W. (1989). Effects of silicon on mineral composition of sorghum grown with excess manganese. J. Plant Nutr., 12, 547–561.

    CAS  Google Scholar 

  • Goldbach, H.E., Blaser-Grill, J., Lindemann, N., Porzelt, M., Hörrmann, C., Lupp, B. and Gessner, B. (1991). Influence of boron on net proton release and its relation to other metabolic processes. Curr. Top. Plant Biochem. Physiol., 10, 195–220.

    CAS  Google Scholar 

  • Goldberg R. 1985. Cell-wall isolation, general growth aspects. In: Cell Components, Modern Methods of Plant Analysis. Springer Verlag Berlin.

    Google Scholar 

  • González, A. and Lynch, J.P. (1999). Subcellular and tissue Mn compartmentation in bean leaves under Mn toxicity stress. Aust. J. Plant Physiol., 26, 811–822.

    Article  Google Scholar 

  • González, A., Steffen, K.L. and Lynch, J.P. (1998). Light and excess manganese. Plant Physiol., 118, 493–504.

    Article  PubMed  Google Scholar 

  • Hammond, K.E., Evans, D.E. and Hodson, M.J. (1995). Aluminium silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil, 173, 89–95.

    Article  CAS  Google Scholar 

  • Handreck, K.A. and Jones, L.H.P. (1968). Studies of silica in the oat plant. IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration. Plant Soil, 24, 449–458.

    Article  Google Scholar 

  • Heine, G., Tikum, G. and Horst, W.J. (2005). Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. J. Plant Nutr. Soil Sci., 168, 600–606.

    Article  CAS  Google Scholar 

  • Hodson M.J. and Evans D.E. (1995). Aluminium silicon interactions in higher plants. J. Exp. Bot. 46 (283), 161–171.

    Article  CAS  Google Scholar 

  • Hodson, M.J. and Sangster, A.G. (1989a). Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). II. X-ray microanalysis and backscattered electron imaging. Can. J. Bot., 67, 281–287.

    Google Scholar 

  • Hodson, M.J. and Sangster, A.G. (1993). The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann. Bot., 72, 389–400.

    Article  CAS  Google Scholar 

  • Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants, II. Deposition of oxidized manganese in plant tissues. Soil Sci. Plant Nutr., 33, 595–606.

    CAS  Google Scholar 

  • Horst, W.J. and Marschner, H. (1978a) Symptome von Mangan-Überschuss bei Bohnen (Phaseolus vulgaris). Z. Pflanzenernaehr. Bodenkd., 141, 129–142.

    Article  CAS  Google Scholar 

  • Horst, W.J. and Marschner H (1978b) Einfluß von Silizium auf den Bindungszustand von Mangan im Blattgewebe von Bohnen (Phaseolus vulgaris). Z. Pflanzenernaehr. Bodenkd., 141, 487–497.

    Article  CAS  Google Scholar 

  • Horst, W.J. and Marschner, H. (1978c). Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil, 50, 287–303.

    Article  CAS  Google Scholar 

  • Horst, W.J., Fecht, M., Naumann, A., Wissemeier, A.H. and Maier, P. (1999). Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci., 162, 263–274.

    Article  CAS  Google Scholar 

  • Idris, M., Hossain, M. and Choudhury, F.A. (1975). The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil, 43, 691–695.

    Article  Google Scholar 

  • Islam, A. and Saha, R.C. (1969). Effects of silicon on the chemical composition of rice plants. Plant Soil, 30, 446–457.

    Article  CAS  Google Scholar 

  • Iwasaki, K. and Matsumura, A. (1999). Effect of Silicon on Alleviation of Manganese,Toxicity in Pumpkin (Cucurbita moschataDuch. cv. Shintosa). Soil Sci. Plant Nutr., 45, 909–920.

    CAS  Google Scholar 

  • Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2002a). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 238, 281–288.

    Article  CAS  Google Scholar 

  • Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2002b). Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata(L.) Walp.). J. Plant Physiol., 159, 167–173.

    Article  CAS  Google Scholar 

  • Jones, L.H.P. and Handreck, K.A. (1965). Studies of silica in the oat plant. III. Uptake of silica from soils by the plant. Plant Soil, 23, 79–96.

    Article  CAS  Google Scholar 

  • Kaufman, P.B., Dayanandan, P. and Franklin, C.A. (1985). Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot., 55, 487–507.

    Google Scholar 

  • Kinrade, S.D., Del Nin, J.W., Schach, A.S., Sloan, T.A., Wilson, K.L. and Knight, C.T.G. (1999). Stable five- and six-coordinated silicate anions in aqueous solution. Science, 285, 1542–1545.

    Article  PubMed  CAS  Google Scholar 

  • Kluthcouski, J. (1980). The effect of silicon on the manganese nutrition of soybeans (Glycine max (L.) Merrill). Plant Soil, 56, 157–160.

    Article  CAS  Google Scholar 

  • Liang, Y. and Shen, Z. (1994). Interaction of silicon and boron in oilseed rape plants. J. Plant Nutr., 17, 415–425.

    CAS  Google Scholar 

  • Liang, Y., Shen, Q., Shen, Z. and Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr., 19, 173–183.

    CAS  Google Scholar 

  • Liang, Y., Si, J. and Römheld, V. (2005).,Silicon uptake and transport is an active process in Cucumis sativus L.New Phytol., 167, 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y.C., Sun, W.C., Si, J. and Romheld, V. (2005). Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol., 54, 678–685.

    Article  CAS  Google Scholar 

  • Loomis, W.D. and Durst, R.W. (1992). Chemistry and biology of boron. BioFactors, 3, 229–239.

    PubMed  CAS  Google Scholar 

  • Ma, J. and Takahashi, E. (1990). The effect of silicic acid on rice in a P-deficient soil. Plant Soil, 126, 121–125.

    Article  CAS  Google Scholar 

  • Ma. J. and Takahashi, E. (1991). Effect of silicate on phosphate availability for rice in a P- deficient soil. Plant Soil, 133, 151–155.

    Article  CAS  Google Scholar 

  • Ma, J. and Takahashi, E. (1993). Interaction between calcium and silicon in water-cultured rice plants. Plant Soil, 148, 107–113.

    Article  CAS  Google Scholar 

  • Ma, J.F., Tamai, K., Ichii, M. and Wu, G.F. (2002). A rice mutant defective in Si uptake. Plant Physiol., 130, 2111–2117.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Mitani, N., Nagoa, S., Konishi, S., Tamai, K., Iwashita, T. and Yano, M. (2004). Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol., 136, 3248–3289.

    Article  Google Scholar 

  • Marschner, H., Oberle, H., Cakmak, I. and Römheld, V. (1990). Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. In M.L. van Beusichem (ed.), Plant nutritionPhysiology and applications (pp. 241–249). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Marschner, H. and Cakmak, I. (1986). Mechanism of phosphorus-induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiol. Plant., 68, 491–496.

    Article  CAS  Google Scholar 

  • Mitani, N. and Ma, J.F. (2005). Uptake system of silicon in different plant species. J. Exp. Bot., 414, 1255–1261.

    Article  CAS  Google Scholar 

  • Miyake, Y. and Takahashi, E. (1978). Silicon deficiency of tomato plant. Soil Sci. Plant Nutr., 24, 175–189.

    CAS  Google Scholar 

  • Miyake, Y. and Takahashi, E. (1983). Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr., 29, 71–83.

    CAS  Google Scholar 

  • Nable, R.O., Lance, R.C.M. and Cartwright, B. (1990). Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Ann. Bot., 66, 83–90.

    CAS  Google Scholar 

  • Neumann, D., Zurnieden, U., Schwieger, W., Leopold, I. and Lichtenberger, O. (1997). Heavy metal tolerance of Minuartia verna. J. Plant Physiol., 151, 101–108.

    CAS  Google Scholar 

  • Polster J and Schwenk M (1992) The role of boron, silicon and nucleic bases on pollen tube growth of Lilium longiflorum (L.). Z. Naturforsch., 47, 102–108.

    CAS  Google Scholar 

  • Rafi, M.M., Epstein, E. and Falk, R.H. (1997). Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). J. Plant Physiol., 151, 497–501.

    CAS  Google Scholar 

  • Raven, J.A. (1983). The transport and function of silicon in plants. Biol. Rev. Camb. Philos. Soc., 58, 179–207.

    CAS  Google Scholar 

  • Rogalla, H. (2001). Einfluss von Silizium auf Austauschereigenschaften des Apoplasten und indungszustand von Nährstoffen in Blättern. Dissertation. Universität Hohenheim, Institut für Botanik und Botanischer Garten und Institut für Pflanzenernährung. Stuttgart: Verlag Grauer (ISBN 3-86186-363-4).

    Google Scholar 

  • Rogalla, H. and Römheld, V. (2001). Mechanism of silicon-mediated manganese tolerance of Cucumis sativus L.: Effect of silicon nutrition on manganese concentration in the intercellular washing fluid. In W.J. Horst et al. (eds), Plant nutrition – Food security and sustainability of agro-ecosystems (pp. 258–259). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Rogalla, H. and Römheld, V. (2002a). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ., 25, 549–555.

    Article  CAS  Google Scholar 

  • Rogalla, H. and Römheld, V. (2002b). Effects of silicon on the availability of boron: possible effects on the phenol pathway and on the redox status in Cucumis sativus L. In H. Goldbach et al. (eds), Boron nutrition in animals and plants (pp. 205–213). London: Kluwer Plenum Academic Publishers.

    Google Scholar 

  • Samuels, A.L., Glass, A.D.M., Menzies, J.G. and Ehret, D.L. (1994). Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea. Physiol. Mol. Plant Pathol., 44, 237–242.

    Article  CAS  Google Scholar 

  • Takahashi, E., Ma, J.F. and Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comm. Agric. Food Chem., 2, 99–122.

    CAS  Google Scholar 

  • Vorm, P.D.J., v.d. (1980). Uptake of Si by five plant species, as influenced by variations in Si-supply. Plant Soil, 56, 153–156.

    Article  Google Scholar 

  • Wang, Y., Stass, A and Horst, W.J. (2004). Apoplastic binding of aluminum is involved in silicon-induced amlioration of aluminum toxicity in maize. Plant Physiol., 136, 3762–3770.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, J., Wiese, H., Schwartz, J. and Schubert, S. (2005). Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew. J. Plant Nutr. Soil Sci., 168, 1–6.

    Article  CAS  Google Scholar 

  • Williams, E.D. and Vlamis, J. (1957). The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley plants grown in culture solutions. Plant Physiol., 32, 404–409.

    PubMed  CAS  Google Scholar 

  • Wissemeier, A.H. and Horst, W.J. (1992). Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp). Plant Soil, 143, 299–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wiese, H., Nikolic, M., Römheld, V. (2007). Silicon in Plant Nutrition. In: Sattelmacher, B., Horst, W.J. (eds) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_3

Download citation

Publish with us

Policies and ethics