Skip to main content

MODELING OF LIGHT SCATTERING BY SINGLE RED BLOOD CELLS WITH THE FDTD METHOD

  • Conference paper
Optics of Biological Particles

Part of the book series: NATO Science Series ((NAII,volume 238))

Abstract

Scattering of light is one of major pathways that biological cells interact with optical radiation in a wide spectral region from ultraviolet to near-infrared. In this region the size parameters of most human cells vary from about 10 to 100, and accurate modeling of scattering requires treatment of light as electromagnetic waves. In this chapter, we review the generic aspects of the finite-difference-time-domain (FDTD) method for solving the problems of light scattering by biological cells and a parallel FDTD algorithm for numerical computation. Furthermore, we review a specific application of FDTD to the simulation of the scattering properties of single human red blood cells with biconcave and deformed shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P. J. Wyatt, D. T. Phillips, Structure of single bacteria from light scattering, J. Theor. Biol, 37(3), 493–501, (1972).

    Article  Google Scholar 

  2. G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, A flow-system multiangle light-scattering instrument for cell characterization, Clin Chem, 21(9), 1297–304, (1975).

    Google Scholar 

  3. W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, Application of polarization effects in light scattering: A new biophysical tool, Proc. Nat. Acad. Sci. USA, 73, 486–490, (1976).

    Article  ADS  Google Scholar 

  4. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford,M. S. Feld, Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution, Phys. Rev. Lett., 80(3), 627–630, (1998).

    Article  ADS  Google Scholar 

  5. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, V. P. Maltsev, Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation, Appl Opt, 44(25), 5249–56, (2005).

    Article  ADS  Google Scholar 

  6. J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, J. S. Asvestas, Electromagnetic and acoustic scattering by simple shapes, Rev. print, ed. (Hemisphere Pub. Corp., New York, 1987).

    Google Scholar 

  7. H. C. van de Hulst, Light scattering by small particles. (Wiley, New York, 1957).

    Google Scholar 

  8. A. L. Aden, M. Kerker, Scattering of Electromagnetic Waves from Two Concentric Spheres, J. Appl. Phys., 22(10), 1242–1246, (1951).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. O. B. Toon, T. P. Ackerman, Algorithms for the calculation of scattering by stratified spheres, Appl. Opt., 20(20), 3657–3660, (1981).

    Article  ADS  Google Scholar 

  10. T. Wriedt, A Review of Elastic Light Scattering Theories, Part. Part. Syst. Charact, 15, 67–74, (1998).

    Article  Google Scholar 

  11. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

    MATH  Google Scholar 

  12. S. K. Yee, Numerical solutions of initial boundary problems involving Maxwell’s equations in isotropic materials, IEEE Trans. Antennas. Propg., 14, 302–307, (1966).

    Article  ADS  MATH  Google Scholar 

  13. R. W. Lau, R. J. Sheppard, G. Howard, N. M. Bleehen, The modelling of biological systems in three dimensions using the time domain finite-difference method: II. The application and experimental evaluation of the method in hyperthermia applicator design, Phys Med Biol, 31(11), 1257–66, (1986).

    Article  Google Scholar 

  14. P. J. Dimbylow, O. P. Gandhi, Finite-difference time-domain calculations of SAR in a realistic heterogeneous model of the head for plane-wave exposure from 600 MHz to 3 GHz, Phys Med Biol, 36(8), 1075–89, (1991).

    Article  Google Scholar 

  15. G. B. Gentili, M. Leoncini, B. S. Trembly, S. E. Schweizer, FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain, IEEE Trans Biomed Eng, 42(10), 973–80, (1995).

    Article  Google Scholar 

  16. A. Dunn, R. Richard-Kortum, Three-dimensional computation of light scattering from cells, IEEE J. Selected Topics Quantum. Electron., 2, 898–890, (1996).

    Article  Google Scholar 

  17. W. G. Scanlon, N. E. Evans, J. B. Burns, FDTD analysis of close-coupled 418 MHz radiating devices for human biotelemetry, Phys Med Biol, 44(2), 335–45, (1999).

    Article  Google Scholar 

  18. R. Drezek, A. Dunn, R. Richards-Kortum, A Pulsed Finite-Difference Time-Domain (FDTD) Method for Calculating Light Scattering from Cells Over Broad Wavelength Ranges, Opt. Express, 6(7), 147–157, (2000).

    Article  ADS  Google Scholar 

  19. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite- difference time-domain modeling with a perfectly matched layer boundary condition, J. Biomed. Opt, 8(3), 484–94, (2003).

    Article  ADS  Google Scholar 

  20. J. Q. Lu, P. Yang, X. H. Hu, Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method, J. Biomed. Opt, 10(2), 024022, (2005).

    Article  ADS  Google Scholar 

  21. R. S. Brock, X. H. Hu, P. Yang, J. Q. Lu, Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells, Opt. Express, 13(14), 5279–5292, (2005).

    Article  ADS  Google Scholar 

  22. R. S. Brock, X. H. Hu, D. A. Weidner, J. R. Mourant, J. Q. Lu, Parallel FDTD Modeling of Light Scattering by a B-cell with 3D Structure Reconstructed from Confocal Images, submitted to J. Quant. Spectrosc. R.A., (2005).

    Google Scholar 

  23. C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York, 1983).

    Google Scholar 

  24. J. D. Jackson, “Classical electrodynamics,” 3rd ed. (Wiley, New York: 1999) pp. Ch. 10.

    MATH  Google Scholar 

  25. P. Yang, K. N. Liou, Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space, J. Opt. Soc. Amer., A, 13, 2072–2085, (1996).

    Article  ADS  Google Scholar 

  26. E. S. Fry, G. W. Kattawar, Relationships between elements of the Stokes matrix, Appl. Opt, 20(16), 2811–2814, (1981).

    Article  ADS  Google Scholar 

  27. M. I. Mishchenko, J. W. Hovenier, D. W. Mackowski, Single scattering by a small volume element, J. Opt. Soc. Am. A, 21(1), 71–87, (2004).

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Yang, K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds. (Academic Press,San Diego: 1999) pp. Ch. 7.

    Google Scholar 

  29. G. Mur, Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., 23, 377–382, (1981).

    Article  Google Scholar 

  30. A. Bayliss, E. Turkel, Radiation boundary conditions for wave like equations, Commun. Pure Appl Math., 33, 707–725, (1980).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Z. Liao, H. L. Wong, B. Yang, Y. Yuan, A transmitting boundary for transient wave analyses, Scie. Sin., 27, 1063–1076, (1984).

    MATH  Google Scholar 

  32. R. L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comput., 47, 437–459, (1986).

    Article  MATH  MathSciNet  Google Scholar 

  33. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185–200, (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. D. S. Katz, E. T. Thiele, A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave Guided Wave Lett., 4, 268–270, (1994).

    Article  Google Scholar 

  35. S. A. Schelkunoff,Electromagnetic waves. (D. Van Nostrand Company inc., New York, 1943).

    Google Scholar 

  36. P. W. Zhai, Y. K. Lee, G. W. Kattawar, P. Yang, Implemting the near- to far-field transformation in the finite-difference time-domain method, Appl. Opt, 43, 3738–3746, (2004,).

    Article  ADS  Google Scholar 

  37. W. Sun, Q. Fu, Z. Chen, Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition, Appl Opt, 38, 3141–3151, (1999).

    Article  ADS  Google Scholar 

  38. X. Li, A. Taflove, V. Backman, Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects, IEEE Antennas and Wireless Propagation Letter, 4, 35–38, (2005).

    Article  ADS  Google Scholar 

  39. S. Gedney, Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers, IEEE Trans, on Microwave Theory and Techniques, 43, 2510–2514, (1995).

    Article  ADS  Google Scholar 

  40. H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, J. P. Daniel, Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas, International J. of High Speed Computing, 10, 209–234, (1999).

    Article  Google Scholar 

  41. K. C. Chew, V. F. Fusco, A parallel implementaiton of the finite-difference time-domain algorithm, M. J. Numerical Modeling, 8, 293–299, (1995).

    Article  Google Scholar 

  42. P. S. Excell, A. D. Tinniswood, K. Haigh-Hutchinson, Parallel computation of large-scale electromagnetic field distributions, Appl. Comput. Electromagn. Soc. J., 13, 179–187, (1998).

    Google Scholar 

  43. V. Varadarajan, R. Mittra, Finite-difference time-domain analysis using distributed computing, IEEE Microwave Gauided Wave Lett., 4, 144–145, (1994).

    Article  Google Scholar 

  44. J. W. M. Visser, “Analysis and sorting of blood and bone marrow cells,” in Flow Cytometry and Sorting, M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Eds., 2nd ed. (Wiley, New York: 1990) pp. Ch. 33.

    Google Scholar 

  45. W. Groner, N. Mohandas, M. Bessis, New optical technique for measuring erythrocyte deformability with the ektacytomter, Clin. Chem., 26, 1435–1442, (1980).

    Google Scholar 

  46. D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration, Appl. Opt., 24, 1355–1365, (1985).

    Article  ADS  Google Scholar 

  47. P. Mazeron, S. Muller, H. El Azouzi, On intensity reinforcements in small-angle light scattering patterns of erythrocytes under shear, Eur. Biophys. J., 26, 247–252, (1997).

    Article  Google Scholar 

  48. A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique, J. Biomed. Opt., 4(1), 76–84, (1999).

    Article  ADS  Google Scholar 

  49. C. T. Gross, H. Salamon, A. J. Hunt, R. I. Macey, F. Orme, A. T. Quintanilha, Hemoglobin polymerization in sickle cells studied by circular polarized light scattering, Biochim Biophys Acta, 1079(2), 152–60, (1991).

    Article  Google Scholar 

  50. A. G. Borovoi, E. I. Naats, U. G. Oppel, Scattering of light by a red blood cell, J. Biomed. Opt., 3(3), 364–372, (1998).

    Article  ADS  Google Scholar 

  51. S. V. Tsinopoulos, D. Polyzos, Scattering of He Ne laser light by an average-sized red blood cell, Appl. Opt., 38(7), 5499–5510, (1999).

    Article  ADS  Google Scholar 

  52. S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos, Light scattering by aggregated red blood cells, Appl Opt., 41(7), 1408–17, (2002).

    Article  ADS  Google Scholar 

  53. O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives. (C.C. Thomas, Springfield, Ill., 1970).

    Google Scholar 

  54. R. B. Pennell, “Composition of normal human red cells,” in The Red Blood Cell, C. Bishop and D. M. Surgenors, Eds. (Academic Press, New York: 1964.

    Google Scholar 

  55. G. Cicco, A. Pirrelli, Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension, Clin Hemorheol Microcirc, 21(3–4), 169–77, (1999).

    Google Scholar 

  56. E. Evans, Y. C. Fung, Improved measurements of the erythrocyte geometry, Microvasc Res, 4(4), 335–47, (1972).

    Article  Google Scholar 

  57. Y. C. Fung, W. C. O. Tsang, P. Patitucci, High-resolution data on the geometry of red blood cells, Biorheology, 18, 369–385, (1981).

    Google Scholar 

  58. L. G. Henyey, J. L. Greenstein, Diffuse radiation in the galaxy, Astrophys J, 93, 70–83, (1941).

    Article  ADS  Google Scholar 

  59. S. Chien, R. G. King, R. Skalak, S. Usami, A. L. Copley, Viscoelastic properties of human blood and red cell suspensions, Biorheology, 12(6), 341–6, (1975).

    Google Scholar 

  60. A. J. Grimes, “Human Red Cell Metabolism.” (Blackwell Scientific Pub, Oxford: 1980) pp. 57.

    Google Scholar 

  61. R. Skalak, P. I. Branemark, Deformation of red blood cells in capillaries, Science, 164(880), 717–9, (1969).

    Article  ADS  Google Scholar 

  62. P. R. Zardar, S. Chien, R. Skalak, “Interaction of viscous incompressible fluid with an elastic body,” in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65–82.

    Google Scholar 

  63. P. R. Zarda, S. Chien, R. Skalak, Elastic deformations of red blood cells, J Biomech, 10(4), 211–21, (1977).

    Article  Google Scholar 

  64. T. W. Secomb, R. Skalak, N. Ozkaya, J. F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech., 163, 405–423, (1986).

    Article  ADS  Google Scholar 

  65. T. W. Secomb, R. Hsu, A. R. Pries, Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity, Am. J. Physiol. Heart Circ. Physiol., H629-H636, (2001).

    Google Scholar 

  66. K. B. Aptowicz, Y. L. Pan, R. K. Chang, R. G. Pinnick, S. C. Hill, R. L. Tober, A. Goyal, T. Jeys, B. V. Bronk, Two-dimensional angular optical scattering patterns of microdroplets in the mid infrared with strong and weak absorption, Opt Lett,29(17), 1965–7, (2004).

    Article  ADS  Google Scholar 

  67. L. Turner, Rayleigh-Gans-Born Light Scattering by Ensembles of Randomly Oriented Anisotropic Particles, Appl. Opt., 12(5), 1085–1090, (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Lu, J.Q., Brock, R.S., Yang, P., Hu, XH. (2007). MODELING OF LIGHT SCATTERING BY SINGLE RED BLOOD CELLS WITH THE FDTD METHOD. In: Hoekstra, A., Maltsev, V., Videen, G. (eds) Optics of Biological Particles. NATO Science Series, vol 238. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5502-7_7

Download citation

Publish with us

Policies and ethics