Skip to main content

Spectra FRET: A Fluorescence Resonance Energy Transfer Method in Live Cells

  • Chapter
Reviews in Fluorescence 2007

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

The technique of Fluorescence Resonance Energy Transfer (FRET) has been extensively used in optical microscopy for the study of bio-molecular interactions. As most transient and weak intermolecular interactions only occur in intact cells under physiological conditions, it is essential to be able to record FRET from live cells. This chapter introduces a new spectra FRET approach that has recently been developed and tested. It provides the spatial resolution for separation of membrane and intracellular signals. Its spectrum-based procedure is easy to carry out and is powerful in separating donor and acceptor emissions as well as detecting the presence of other background light. Moreover, spectra FRET allows for a fine correction for common contaminations in FRET experiments, such as cross-talk and bleed-through, therefore contributing to the reduction of errors in FRET analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu Rev Biochem 47: 819–46 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. L. Stryer and R.P. Haugland, Energy transfer: a spectroscopic ruler, Proc Natl Acad Sci USA 58(2): 719–26 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. R.Y. Tsien, The green fluorescent protein, Annu Rev Biochem 67: 509–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. G.W. Gordon, G. Berry, X.H. Liang, B. Levine and B. Herman, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy, Biophys J 74(5): 2702–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. M.G. Erickson, B.A. Alseikhan, B.Z. Peterson and D.T. Yue, Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells, Neuron 31(6): 973–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. A.K. Kenworthy, Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy, Methods 24(3): 289–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. F.S. Wouters and P.I. Bastiaens, Imaging protein–protein interactions by fluorescence resonance energy transfer (FRET) microscopy, Curr Protoc Protein Sci 19: Unit19 5 (2001).

    Google Scholar 

  8. A. Miyawaki and R.Y. Tsien, Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein, Methods Enzymol 327: 472–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. F. Festy, S.M. Ameer-Beg, T. Ng and K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy, Mol Biosyst 3(6): 381–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. M. Peter and S.M. Ameer-Beg, Imaging molecular interactions by multiphoton FLIM, Biol Cell 96(3): 231–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, Time-domain fluorescence lifetime imaging applied to biological tissue, Photochem Photobiol Sci 3(8): 795–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. K. Suhling, P.M. French and D. Phillips, Time-resolved fluorescence microscopy, Photochem Photobiol Sci 4(1): 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. M. Cohen-Kashi, Y. Namer and M. Deutsch, Fluorescence resonance energy transfer imaging via fluorescence polarization measurement, J Biomed Opt 11(3): 34015 (2006).

    Article  PubMed  Google Scholar 

  14. D.W. Piston and M.A. Rizzo, FRET by fluorescence polarization microscopy, Methods Cell Biol 85: 415–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. M.A. Rizzo and D.W. Piston, High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy, Biophys J 88(2): L14–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. C.L. Takanishi, E.A. Bykova, W. Cheng and J. Zheng, GFP-based FRET analysis in live cells, Brain Res 1091(1): 132–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. S.Y. Lee, J.A. Letts and R. Mackinnon, Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1, Proc Natl Acad Sci USA 105(22): 7692–7695 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. F. Tombola, M.H. Ulbrich and E.Y. Isacoff, The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor, Neuron 58(4): 546–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. C. Miller and M.M. White, Dimeric structure of single chloride channels from Torpedo electroplax, Proc Natl Acad Sci USA 81(9): 2772–5 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. W. Cheng, F. Yang, C.L. Takanishi and J. Zheng, Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties, J Gen Physiol 129(3): 191–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. J. Zhang and M.D. Allen, FRET-based biosensors for protein kinases: illuminating the kinome, Mol Biosyst 3(11): 759–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. A. Miyawaki, J. Llopis, R. Heim, J.M. McCaffery, J.A. Adams, M. Ikura and R.Y. Tsien, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388(6645): 882–7 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. I.L. Medintz, Recent progress in developing FRET-based intracellular sensors for the detection of small molecule nutrients and ligands, Trends Biotechnol 24(12): 539–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. L. Hodgson, O. Pertz and K.M. Hahn, Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors, Methods Cell Biol 85: 63–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. E.A. Bykova, X.D. Zhang, T.Y. Chen and J. Zheng, Large movement in the C terminus of CLC-0 chloride channel during slow gating, Nat Struct Mol Biol 13(12): 1115–9 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bykova, E.A., Zheng, J. (2009). Spectra FRET: A Fluorescence Resonance Energy Transfer Method in Live Cells. In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_4

Download citation

Publish with us

Policies and ethics