Skip to main content

Nanopores: Generation, Engineering, and Single-Molecule Applications

  • Chapter
  • First Online:
Handbook of Single-Molecule Biophysics

Abstract

Nanopores enable the sensing of individual molecules based on the temporary blockades in ionic pore current. Initially conducted a decade ago with a biological protein pore, electrical recordings are now routinely performed with synthetic pores sculptured into polymeric and inorganic membranes. Assisted by channel engineering, the range of analytes has been expanded from nucleic acids to peptides, proteins, organic polymers, and small molecules. Apart from being an attractive analytical approach, nanopore recording has developed into a general platform technology with which it is possible to examine the biophysics, physicochemistry, and chemistry of individual molecules. Nanopores can also be exploited for separation technologies and nanofluidics due to their ability to control the flow of solvated ions. The combined use with atomic force and fluorescence microscopy is extending the versatility of nanopores for single-molecule research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hladky, S. B., and D. A. Haydon. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225:451–453.

    ADS  Google Scholar 

  2. Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980.

    ADS  Google Scholar 

  3. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802.

    ADS  Google Scholar 

  4. Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.

    Google Scholar 

  5. Hille, B. 2001. Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  6. Sakmann, B., and B. Neher. 1995. Single-channel recording. Plenum Press, New York.

    Google Scholar 

  7. Miller, C. 1986. Ion channel reconstitution. Springer, New York.

    Google Scholar 

  8. Bezrukov, S. M., I. Vodyanoy, and V. A. Parsegian. 1994. Counting polymers moving through a single ion channel. Nature 370:279–281.

    ADS  Google Scholar 

  9. Kasianowicz, J. J., E. Brandin, D. Branton, and D. W. Deamer. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93:13770–13773.

    ADS  Google Scholar 

  10. Braha, O., B. Walker, S. Cheley, J. J. Kasianowicz, L. Song, J. E. Gouaux, and H. Bayley. 1997. Designed protein pores as components for biosensors. Chem. Biol. 4:497–505.

    Google Scholar 

  11. Griffiths, J. 2008. The realm of the nanopore. Interest in nanoscale research has skyrocketed, and the humble pore has become a king. Anal. Chem. 80:23–27.

    Google Scholar 

  12. Rhee, M., and M. A. Burns. 2007. Nanopore sequencing technology: nanopore preparations. Trends Biotechnol. 25:174–181; Dekker, C. 2007. Solid-state nanopores. Nature Nanotechnol. 2:209–215.

    Google Scholar 

  13. Meller, A. 2008. Nucleic-acid analysis at the single-molecule level. In Handbook of single-molecule biophysics. P. Hinterdorfer and A. M. Van Oijen, editors. Springer, New York.

    Google Scholar 

  14. Vercoutere, W., and M. Akeson. 2002. Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 6:816–822.

    Google Scholar 

  15. Deamer, D. W., and D. Branton. 2002. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35:817–825.

    Google Scholar 

  16. Healy, K. 2007. Nanopore-based single-molecule DNA analysis. Nanomedicine 2:459–481.

    Google Scholar 

  17. Healy, K., B. Schiedt, and A. P. Morrison. 2007. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2:875–897.

    Google Scholar 

  18. Zwolak, M., and M. Di Ventra. 2008. Colloquium: Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80:141–165.

    Google Scholar 

  19. Branton, D., D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. H. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss. 2008. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26:1146–1153.

    Google Scholar 

  20. Coulter, W. H. 1953. Means for counting particles suspended in a fluid. U.S. Patent No. 2656508.

    Google Scholar 

  21. Bayley, H., and C. R. Martin. 2000. Resistive-pulse sensing—From microbes to molecules. Chem. Rev. 100:2575–2594.

    Google Scholar 

  22. Stanley-Wood, N. G., and R. W. Lines. 1992. Particle size analysis. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  23. Bianco, P. R., L. R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S. C. Kowalczykowski, and R. J. Baskin. 2001. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378.

    ADS  Google Scholar 

  24. Rasnik, I., S. A. McKinney, and T. Ha. 2006. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3:891–893.

    Google Scholar 

  25. Myong, S., I. Rasnik, C. Joo, T. M. Lohman, and T. Ha. 2005. Repetitive shuttling of a motor protein on DNA. Nature 437:1321–1325.

    ADS  Google Scholar 

  26. Greulich, K. O. 2005. Single-molecule studies on DNA and RNA. ChemPhysChem 6:2458–2471.

    Google Scholar 

  27. Smith, D. E., S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante. 2001. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413:748–752.

    ADS  Google Scholar 

  28. Chemla, Y. R., K. Aathavan, J. Michaelis, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante. 2005. Mechanism of force generation of a viral DNA packaging motor. Cell 122:683–692.

    Google Scholar 

  29. Abbondanzieri, E. A., W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block. 2005. Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465.

    ADS  Google Scholar 

  30. Neuman, K. C., E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–447.

    Google Scholar 

  31. Herbert, K. M., A. La Porta, B. J. Wong, R. A. Mooney, K. C. Neuman, R. Landick, and S. M. Block. 2006. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125:1083–1094.

    Google Scholar 

  32. Perkins, T. T., H. W. Li, R. V. Dalal, J. Gelles, and S. M. Block. 2004. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86:1640–1648.

    ADS  Google Scholar 

  33. Hansma, H. G., R. Golan, W. Hsieh, S. L. Daubendiek, and E. T. Kool. 1999. Polymerase activities and RNA structures in the atomic force microscope. J. Struct. Biol. 127:240–247.

    Google Scholar 

  34. Movileanu, L., and H. Bayley. 2001. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc. Natl. Acad. Sci. USA 98:10137–10141.

    ADS  Google Scholar 

  35. Movileanu, L., S. Cheley, S. Howorka, O. Braha, and H. Bayley. 2001. Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. J. Gen. Physiol. 117:239–252.

    Google Scholar 

  36. Krasilnikov, O. V., C. G. Rodrigues, and S. M. Bezrukov. 2006. Single polymer molecules in a protein nanopore in the limit of a strong polymer–pore attraction. Phys. Rev. Lett. 97:018301(1)–018301(4).

    ADS  Google Scholar 

  37. Bayley, H., O. Braha, and L. Gu. 2000. Stochastic sensing with protein pores. Adv. Mater. 12:139–142.

    Google Scholar 

  38. Howorka, S., L. Movileanu, O. Braha, and H. Bayley. 2001. Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl. Acad. Sci. USA 98:12996–13001.

    ADS  Google Scholar 

  39. Howorka, S., J. Nam, H. Bayley, and D. Kahne. 2004. Stochastic detection of monovalent and multivalent protein–ligand interactions. Angew. Chem. Int. Ed. Engl. 43:842–846.

    Google Scholar 

  40. Mayer, M., V. Semetey, I. Gitlin, J. Yang, and G. M. Whitesides. 2008. Using ion channel-forming peptides to quantify protein-ligand interactions. J. Am. Chem. Soc. 130:1453–1465.

    Google Scholar 

  41. Hornblower, B., A. Coombs, R. D. Whitaker, A. Kolomeisky, S. J. Picone, A. Meller, and M. Akeson. 2007. Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods 4:315–317.

    Google Scholar 

  42. Cockroft, S. L., J. Chu, M. Amorin, and M. R. Ghadiri. 2008. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130:818–820.

    Google Scholar 

  43. Benner, S., R. J. A. Chen, N. A. Wilson, R. Abu-Shumays, N. Hurt, K. R. Lieberman, D. W. Deamer, W. B. Dunbar, and M. Akeson. 2007. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2:718–724.

    ADS  Google Scholar 

  44. Astier, Y., D. E. Kainov, H. Bayley, R. Tuma, and S. Howorka. 2007. Stochastic detection of motor protein–RNA complexes by single-channel current recording. ChemPhysChem 8:2189–2194.

    Google Scholar 

  45. Luchian, T., S. H. Shin, and H. Bayley. 2003. Kinetics of a three-step reaction observed at the single-molecule level. Angew. Chem. Int. Ed. Engl. 42:1926–1929.

    Google Scholar 

  46. Loudwig, S., and H. Bayley. 2006. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128:12404–12405.

    Google Scholar 

  47. Movileanu, L., J. P. Schmittschmitt, J. M. Scholtz, and H. Bayley. 2005. Interactions of peptides with a protein pore. Biophys. J. 89:1030–1045.

    Google Scholar 

  48. Stefureac, R., Y. T. Long, H. B. Kraatz, P. Howard, and J. S. Lee. 2006. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochemistry 45:9172–9179.

    Google Scholar 

  49. Zhao, Q., D. A. Jayawardhana, D. Wang, and X. Guan. 2009. Study of peptide transport through engineered protein channels. J. Phys. Chem. B. 113:3572–3578.

    Google Scholar 

  50. Kullman, L., M. Winterhalter, and S. M. Bezrukov. 2002. Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82:803–812.

    Google Scholar 

  51. Nestorovich, E. M., C. Danelon, M. Winterhalter, and S. M. Bezrukov. 2002. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA 99:9789–9794.

    ADS  Google Scholar 

  52. Rostovtseva, T. K., and S. M. Bezrukov. 1998. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74:2365–2373.

    ADS  Google Scholar 

  53. Rostovtseva, T. K., A. Komarov, S. M. Bezrukov, and M. Colombini. 2002. VDAC channels differentiate between natural metabolites and synthetic molecules. J. Membr. Biol. 187:147–156.

    Google Scholar 

  54. Hume, R. I., L. W. Role, and G. D. Fischbach. 1983. Acetylcholine release from growth cones detected with patches of acetylcholine receptor–rich membranes. Nature 305:632–634.

    ADS  Google Scholar 

  55. Allen, T. G. 1997. The ‘sniffer-patch’ technique for detection of neurotransmitter release. Trends Neurosci. 20:192–197.

    Google Scholar 

  56. Bayley, H., and P. S. Cremer. 2001. Stochastic sensors inspired by biology. Nature 413:226–230.

    ADS  Google Scholar 

  57. Bayley, H., and L. Jayasinghe. 2004. Functional engineered channels and pores. Mol. Membr. Biol. 21:209–220.

    Google Scholar 

  58. Bayley, H., O. Braha, S. Cheley, and L. Q. Gu. 2005. Engineered nanopores. In Nanobiotechnology: Concepts, applications and perspectives. C. M. Niemeyer and C. A. Mirkin, editors. Wiley-VCH, Weinheim, Germany, pp. 93–110.

    Google Scholar 

  59. Bong, D. T., T. D. Clark, J. R. Granja, and M. R. Ghadiri. 2001. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. Engl. 40:988–1011.

    Google Scholar 

  60. Matile, S., A. Som, and N. Sorde. 2004. Recent synthetic ion channels and pores. Tetrahedron 60:6405–6435.

    Google Scholar 

  61. Sakaki, Y., J. Mareda, and S. Matile. 2007. Ion channels and pores, made from scratch. Molecular Biosystems 3:658–666.

    Google Scholar 

  62. Song, L., M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866.

    ADS  Google Scholar 

  63. Gouaux, J. E., O. Braha, M. R. Hobaugh, L. Song, S. Cheley, C. Shustak, and H. Bayley. 1994. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91:12828–12831.

    ADS  Google Scholar 

  64. Benz, R. 2004. Bacterial and eukaryotic porins: Structure, function, mechanism. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  65. Conlan, S., Y. Zhang, S. Cheley, and H. Bayley. 2000. Biochemical and biophysical characterization of OmpG: a monomeric porin. Biochemistry 39:11845–11854.

    Google Scholar 

  66. Menestrina, G. 2003. Pore-forming peptides and protein toxins. Taylor & Francis, London.

    Google Scholar 

  67. Borisenko, V., T. Lougheed, J. Hesse, E. Füreder-Kitzmüller, N. Fertig, J. C. Behrends, G. A. Woolley, and G. J. Schütz. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84:612–622.

    ADS  Google Scholar 

  68. Armstrong, K. M., E. P. Quigley, P. Quigley, D. S. Crumrine, and S. Cukierman. 2001. Covalently linked gramicidin channels: effects of linker hydrophobicity and alkaline metals on different stereoisomers. Biophys. J. 80:1810–1818.

    Google Scholar 

  69. Ghadiri, M. R., J. R. Granja, and L. K. Buehler. 1994. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304.

    ADS  Google Scholar 

  70. Clark, T. D., K. Kobayashi, and M. R. Ghadiri. 1999. Covalent capture and stabilization of cylindrical beta-sheet peptide assemblies. Chem-Eur. J. 5:782–792.

    Google Scholar 

  71. Tokarz, M., B. Akerman, J. Olofsson, J. F. Joanny, P. Dommersnes, and O. Orwar. 2005. Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes. Proc. Natl. Acad. Sci. USA 102:9127–9132.

    ADS  Google Scholar 

  72. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl, editors. 2008. Current protocols in molecular biology. Wiley, New York.

    Google Scholar 

  73. Xie, J., and P. G. Schultz. 2006. A chemical toolkit for proteins—an expanded genetic code. Nat. Rev. Mol. Cell. Biol. 7:775–782.

    Google Scholar 

  74. Muralidharan, V., and T. W. Muir. 2006. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 3:429–438.

    Google Scholar 

  75. Schwarzer, D., and P. A. Cole. 2005. Protein semisynthesis and expressed protein ligation: chasing a protein’s tail. Curr. Opin. Chem. Biol. 9:561–569.

    Google Scholar 

  76. Blake, S., T. Mayer, M. Mayer, and J. Yang. 2006. Monitoring chemical reactions by using ion-channel-forming peptides. ChemBioChem 7:433–435.

    Google Scholar 

  77. Macmillan, D. 2006. Evolving strategies for protein synthesis converge on native chemical ligation. Angew. Chem. Int. Ed. Engl. 45:7668–7672.

    Google Scholar 

  78. Chen, M., S. Khalid, M. S. Sansom, and H. Bayley. 2008. Outer membrane protein G: engineering a quiet pore for biosensing. Proc. Natl. Acad. Sci. USA 105:6272–6277.

    ADS  Google Scholar 

  79. Merzlyak, P. G., M. F. P. Capistrano, A. Valeva, J. J. Kasianowicz, and O. V. Krasilnikov. 2005. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys. J. 89:3059–3070.

    Google Scholar 

  80. Miedema, H., M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, and B. Eisenberg. 2007. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7:2886–2891.

    ADS  Google Scholar 

  81. Miedema, H., A. Meter-Arkema, J. Wierenga, J. Tang, B. Eisenberg, W. Nonner, H. Hektor, D. Gillespie, and W. Meijberg. 2004. Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. Biophys. J. 87:3137–3147.

    Google Scholar 

  82. Guan, X., L. Q. Gu, S. Cheley, O. Braha, and H. Bayley. 2005. Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6:1875–1881.

    Google Scholar 

  83. Xie, H., O. Braha, L. Q. Gu, S. Cheley, and H. Bayley. 2005. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem. Biol. 12:109–120.

    Google Scholar 

  84. Howorka, S., S. Cheley, and H. Bayley. 2001. Sequence-specific detection of individual DNA-strands using engineered nanopores. Nat. Biotechnol. 19:636–639.

    Google Scholar 

  85. Howorka, S., L. Movileanu, X. Lu, M. Magnon, S. Cheley, O. Braha, and H. Bayley. 2000. A protein pore with a single polymer chain tethered within the lumen. J. Am. Chem. Soc. 122:2411–2416.

    Google Scholar 

  86. Movileanu, L., S. Howorka, O. Braha, and H. Bayley. 2000. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18:1091–1095.

    Google Scholar 

  87. Gu, L. Q., O. Braha, S. Conlan, S. Cheley, and H. Bayley. 1999. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690.

    ADS  Google Scholar 

  88. Wu, H. C., Y. Astier, G. Maglia, E. Mikhailova, and H. Bayley. 2007. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129:16142–16148.

    Google Scholar 

  89. Litvinchuk, S., H. Tanaka, T. Miyatake, D. Pasini, T. Tanaka, G. Bollot, J. Mareda, and S. Matile. 2007. Synthetic pores with reactive signal amplifiers as artificial tongues. Nat. Mater. 6:576–580.

    Google Scholar 

  90. Montal, M., and P. Mueller. 1972. Formation of bimolecular membranes from lipid monolayers and study of their electric properties. Proc. Natl. Acad. Sci. USA 69:3561–3566.

    ADS  Google Scholar 

  91. Holden, M. A., and H. Bayley. 2005. Direct introduction of single protein channels and pores into lipid bilayers. J. Am. Chem. Soc. 127:6502–6503.

    Google Scholar 

  92. Holden, M. A., L. Jayasinghe, O. Daltrop, A. Mason, and H. Bayley. 2006. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2:314–318.

    Google Scholar 

  93. Mayer, M., J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides. 2003. Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85:2684–2695.

    Google Scholar 

  94. White, R. J., E. N. Ervin, T. Yang, X. Chen, S. Daniel, P. S. Cremer, and H. S. White. 2007. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129:11766–11775.

    Google Scholar 

  95. Shenoy, D. K., W. R. Barger, A. Singh, R. G. Panchal, M. Misakian, V. M. Stanford, and J. J. Kasianowicz. 2005. Functional reconstitution of protein ion channels into planar polymerizable phospholipid membranes. Nano Lett. 5:1181–1185.

    ADS  Google Scholar 

  96. Jeon, T. J., N. Malmstadt, and J. J. Schmidt. 2006. Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc. 128:42–43.

    Google Scholar 

  97. Kang, X. F., S. Cheley, A. C. Rice-Ficht, and H. Bayley. 2007. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 129:4701–4705.

    Google Scholar 

  98. Shim, J. W., and L. Q. Gu. 2007. Stochastic sensing on a modular chip containing a single-ion channel. Anal. Chem. 79:2207–2213.

    Google Scholar 

  99. Hromada, L. P., B. J. Nablo, J. J. Kasianowicz, M. A. Gaitan, and D. L. DeVoe. 2008. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab Chip 8:602–608.

    Google Scholar 

  100. Atanasov, V., N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhausser, W. Knoll, and I. Koper. 2005. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys. J. 89:1780–1788.

    Google Scholar 

  101. Atanasov, V., P. P. Atanasova, I. K. Vockenroth, N. Knorr, and I. Koper. 2006. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17: 631–637.

    Google Scholar 

  102. Andersson, M., H. M. Keizer, C. Zhu, D. Fine, A. Dodabalapur, and R. S. Duran. 2007. Detection of single ion channel activity on a chip using tethered bilayer membranes. Langmuir 23:2924–2927.

    Google Scholar 

  103. Drexler, J., and C. Steinem. 2003. Pore-suspending lipid bilayers on porous alumina investigated by electrical impedance spectroscopy. J. Phys. Chem. B 107:11245–11254.

    Google Scholar 

  104. Deme, B., and D. Marchal. 2005. Polymer-cushioned lipid bilayers in porous alumina. Eur. Biophys. J. Biophys. 34:170–179.

    Google Scholar 

  105. Holden, M. A., D. Needham, and H. Bayley. 2007. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129:8650–8655.

    Google Scholar 

  106. Hwang, W. L., M. Chen, B. Cronin, M. A. Holden, and H. Bayley. 2008. Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130:5878–5879.

    Google Scholar 

  107. Fleischer, R. L., P. B. Price, and R. M. Walker. 1975. Nuclear tracks in solids. Principles and applications. University of California Press, Berkeley, CA.

    Google Scholar 

  108. http://www.gsi.de/forschung/mf/index_e.html, Gesellchaft fuer Schwerionenforschung, Materials Research, Darmstadt, Germany.

  109. Harrell, C. C., S. B. Lee, and C. R. Martin. 2003. Synthetic single-nanopore and nanotube membranes. Anal. Chem. 75:6861–6867.

    Google Scholar 

  110. Spohr, R. 1983. Methods and device to generate a predetermined number of ion tracks. German Patent No. DE 2951376 C2; U. S. Patent No. 4369370.

    Google Scholar 

  111. Apel, P. Y., Y. E. Korchev, Z. Siwy, R. Spohr, and M. Yoshida. 2001. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Meth. B 184:337–346.

    ADS  Google Scholar 

  112. Heins, E. A., Z. S. Siwy, L. A. Baker, and C. R. Martin. 2005. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 5:1824–1829.

    ADS  Google Scholar 

  113. Bean, C., and W. DeSorbo. 1968. U.S. Patent No. 3770532.

    Google Scholar 

  114. Dobrev, D., J. Vetter, R. Neumann, and N. Angert. 2001. Conical etching and electrochemical metal replication of heavy-ion tracks in polymer foils. J. Vac. Sci. Technol. B 19:1385–1387.

    Google Scholar 

  115. Harrell, C. C., Z. S. Siwy, and C. R. Martin. 2006. Conical nanopore membranes: controlling the nanopore shape. Small 2:194–198.

    Google Scholar 

  116. Siwy, Z., P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. O. Voss. 2003. Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 532:1061–1066.

    ADS  Google Scholar 

  117. Siwy, Z. S. 2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:735–746.

    Google Scholar 

  118. Siwy, Z., P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss. 2003. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Meth. B 208:143–148.

    ADS  Google Scholar 

  119. Siwy, Z., D. Dobrev, R. Neumann, C. Trautmann, and K. Voss. 2003. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A 76:781–785.

    ADS  Google Scholar 

  120. Wharton, J. E., P. Jin, L. T. Sexton, L. P. Horne, S. A. Sherrill, W. K. Mino, and C. R. Martin. 2007. A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small 3:1424–1430.

    Google Scholar 

  121. Park, S. R., H. B. Peng, and X. S. S. Ling. 2007. Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3:116–119.

    Google Scholar 

  122. Li, J., D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. 2001. Ion-beam sculpting at nanometre length scales. Nature 412:166–169.

    ADS  Google Scholar 

  123. Wu, M. Y., D. Krapf, M. Zandbergen, H. Zandbergen, and P. E. Batson. 2005. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87:113106(1)–113106(3).

    ADS  Google Scholar 

  124. Cai, Q., B. Ledden, E. Krueger, J. A. Golovchenko, and J. L. Li. 2006. Nanopore sculpting with noble gas ions. J. Appl. Phys. 100:024914(1)–024914(6).

    ADS  Google Scholar 

  125. Stein, D. M., C. J. McMullan, J. L. Li, and J. A. Golovchenko. 2004. Feedback-controlled ion beam sculpting apparatus. Rev. Sci. Instrum. 75:900–905.

    ADS  Google Scholar 

  126. Storm, A. J., J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker. 2003. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2:537–540.

    ADS  Google Scholar 

  127. Kim, M. J., M. Wanunu, D. C. Bell, and A. Meller. 2006. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18:3149–3153.

    Google Scholar 

  128. Kim, M. J., B. McNally, K. Murata, and A. Meller. 2007. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18:205302(1)–205302(5).

    Google Scholar 

  129. Lo, C. J., T. Aref, and A. Bezryadin. 2006. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17:3264–3267.

    ADS  Google Scholar 

  130. Wei, C., A. J. Bard, and S. W. Feldberg. 1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:4627–4633.

    Google Scholar 

  131. Karhanek, M., J. T. Kemp, N. Pourmand, R. W. Davis, and C. D. Webb. 2005. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett. 5:403–407.

    ADS  Google Scholar 

  132. Umehara, S., N. Pourmand, C. D. Webb, R. W. Davis, K. Yasuda, and M. Karhanek. 2006. Current rectification with poly-L-lysine-coated quartz nanopipettes. Nano Lett. 6:2486–2492.

    ADS  Google Scholar 

  133. Korchev, Y. E., C. L. Bashford, M. Milovanovic, I. Vodyanoy, and M. J. Lab. 1997. Scanning ion conductance microscopy of living cells. Biophys. J. 73:653–658.

    Google Scholar 

  134. Hansma, P. K., B. Drake, O. Marti, S. A. C. Gould, and C. B. Prater. 1989. The scanning ion-conductance microscope. Science 243:641–643.

    ADS  Google Scholar 

  135. White, R. J., B. Zhang, S. Daniel, J. M. Tang, E. N. Ervin, P. S. Cremer, and H. S. White. 2006. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir 22:10777–10783.

    Google Scholar 

  136. Schaffer, C. B., A. Brodeur, J. F. Garcia, and E. Mazur. 2001. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26:93–95.

    ADS  Google Scholar 

  137. Uram, J. D., K. Ke, A. J. Hunt, and M. Mayer. 2006. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem. Int. Ed. Engl. 45:2281–2285.

    Google Scholar 

  138. Saleh, O. A., and L. L. Sohn. 2003. An artificial nanopore for molecular sensing. Nano Lett. 3:37–38.

    ADS  Google Scholar 

  139. Grabarek, Z., and J. Gergely. 1990. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185:131–135.

    Google Scholar 

  140. Vlassiouk, I., and Z. S. Siwy. 2007. Nanofluidic diode. Nano Lett. 7:552–556.

    ADS  Google Scholar 

  141. Siwy, Z., and A. Fulinski. 2002. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89:198103(1)–198103(4).

    ADS  Google Scholar 

  142. Siwy, Z., and A. Fulinski. 2004. A nanodevice for rectification and pumping ions. Am. J. Phys. 72:567–574.

    ADS  Google Scholar 

  143. Ali, M., B. Schiedt, K. Healy, R. Neumann, and A. Ensinger. 2008. Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology 19:085713(1)–085713(6).

    ADS  Google Scholar 

  144. Hanggi, P., and R. Bartussek. 1996. Brownian rectifiers: how to convert Brownian motion into directed transport. Lect. Notes Phys. 476:294–308.

    ADS  Google Scholar 

  145. Astumian, R. D. 1997. Thermodynamics and kinetics of a Brownian motor. Science 276:917–922.

    Google Scholar 

  146. Hanggi, P., and F. Marchesoni. 2009. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81:387–442.

    Google Scholar 

  147. Cervera, J., B. Schiedt, and P. Ramirez. 2005. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71:35–41.

    ADS  Google Scholar 

  148. Cervera, J., B. Schiedt, R. Neumann, S. Mafe, and P. Ramirez. 2006. Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys. 124:104706(1)–104706(9).

    ADS  Google Scholar 

  149. Kosinska, I. D., I. Goychuk, M. Kostur, G. Schmid, and P. Hanggi. 2008. Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Phys. Rev. E 77:031131(1)–031131(10).

    Google Scholar 

  150. Karnik, R., C. H. Duan, K. Castelino, H. Daiguji, and A. Majumdar. 2007. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7:547–551.

    ADS  Google Scholar 

  151. Ulman, A. 1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–1554.

    Google Scholar 

  152. Kobayashi, Y., and C. R. Martin. 1999. Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal. Chem. 71:3665–3672.

    Google Scholar 

  153. Jirage, K. B., J. C. Hulteen, and C. R. Martin. 1999. Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 71:4913–4918.

    Google Scholar 

  154. Martin, C. R., M. Nishizawa, K. Jirage, M. S. Kang, and S. B. Lee. 2001. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater. 13:1351–1362.

    Google Scholar 

  155. Jirage, K. B., J. C. Hulteen, and C. R. Martin. 1997. Nanotubule-based molecular-filtration membranes. Science 278:655–658.

    ADS  Google Scholar 

  156. Siwy, Z., E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin. 2004. Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 126:10850–10851.

    Google Scholar 

  157. Kohli, P., C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, and C. R. Martin. 2004. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986.

    ADS  Google Scholar 

  158. Lee, S. B., D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin. 2002. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296:2198–2200.

    ADS  Google Scholar 

  159. Yu, S. F., S. B. Lee, and C. R. Martin. 2003. Electrophoretic protein transport in gold nanotube membranes. Anal. Chem. 75:1239–1244.

    Google Scholar 

  160. Chen, P., T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, and D. Branton. 2004. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4:1333–1337.

    ADS  Google Scholar 

  161. Wanunu, M., and A. Meller. 2007. Chemically modified solid-state nanopores. Nano Lett. 7:1580–1585.

    ADS  Google Scholar 

  162. Nilsson, J., J. R. I. Lee, T. V. Ratto, and S. E. Letant. 2006. Localized functionalization of single nanopores. Adv. Mater. 18:427–431.

    Google Scholar 

  163. Danelon, C., C. Santschi, J. Brugger, and H. Vogel. 2006. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 22:10711–10715.

    Google Scholar 

  164. Neher, E., and J. H. Steinbach. 1978. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. 277:153–176.

    Google Scholar 

  165. Fukushima, Y. 1982. Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording. J. Physiol. 331:311–331.

    Google Scholar 

  166. Blake, S., R. Capone, M. Mayer, and J. Yang. 2008. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes. Bioconjugate Chem. 19:1614–1624.

    Google Scholar 

  167. Akeson, M., D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77:3227–3233.

    Google Scholar 

  168. Mathe, J., A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller. 2005. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA 102:12377–12382.

    ADS  Google Scholar 

  169. Braha, O., L. Q. Gu, X. Lu, S. Cheley, and H. Bayley. 2000. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18:1005–1007.

    Google Scholar 

  170. Harrell, C. C., Y. Choi, L. P. Horne, L. A. Baker, Z. S. Siwy, and C. R. Martin. 2006. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22:10837–10843.

    Google Scholar 

  171. Han, A., G. Schurmann, G. Mondin, R. A. Bitterli, N. G. Hegelbach, N. F. de Rooij, and R. Staufer. 2006. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88:093901(1)–093901(3).

    Google Scholar 

  172. Sexton, L. T., L. P. Horne, S. A. Sherrill, G. W. Bishop, L. A. Baker, and C. R. Martin. 2007. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129:13144–13153.

    Google Scholar 

  173. Wolfe, A. J., M. M. Mohammad, S. Cheley, H. Bayley, and L. Movileanu. 2007. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129:14034–14041.

    Google Scholar 

  174. Bezrukov, S. M., and J. J. Kasianowicz. 1997. The charge state of an ion channel controls neutral polymer entry into its pore. Eur. Biophys. J. Biophy. 26:471–476.

    Google Scholar 

  175. Robertson, J. W. F., C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov, and J. J. Kasianowicz. 2007. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl. Acad. Sci. USA 104:8207–8211.

    ADS  Google Scholar 

  176. Vercoutere, W., S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, and M. Akeson. 2001. Rapid discrimination among individual DNA hairpin molecules at single- nucleotide resolution using an ion channel. Nat. Biotechnol. 19:248–252.

    Google Scholar 

  177. Dudko, O. K., J. Mathé, A. Szabo, A. Meller, and G. Hummer. 2007. Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys. J. 92:4188–4195.

    ADS  Google Scholar 

  178. Howorka, S., and H. Bayley. 2002. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys. J. 83:3202–3210.

    ADS  Google Scholar 

  179. Goodrich, C. P., S. Kirmizialtin, B. M. Huyghues-Despointes, A. Zhu, J. M. Scholtz, D. E. Makarov, and L. Movileanu. 2007. Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations. J. Phys. Chem. B 111:3332–3335.

    Google Scholar 

  180. Oukhaled, G., J. Mathé, A. L. Biance, L. Bacri, J. M. Betton, D. Lairez, J. Pelta, and L. Auvray. 2007. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98:158101(1)–158101(4).

    ADS  Google Scholar 

  181. Kasianowicz, J. J., S. E. Henrickson, H. H. Weetall, and B. Robertson. 2001. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 73:2268–2272.

    Google Scholar 

  182. Mathe, J., H. Visram, V. Viasnoff, Y. Rabin, and A. Meller. 2004. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87:3205–3212.

    ADS  Google Scholar 

  183. Nakane, J., M. Wiggin, and A. Marziali. 2004. A nanosensor for transmembrane capture and identification of single nucleic Acid molecules. Biophys. J. 87:615–621.

    ADS  Google Scholar 

  184. Martin, C. R., and Z. S. Siwy. 2007. Learning nature’s way: Biosensing with synthetic nanopores. Science 317:331–332.

    Google Scholar 

  185. Iqbal, S. M., D. Akin, and R. Bashir. 2007. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2:243–248.

    ADS  Google Scholar 

  186. Cheley, S., L. Q. Gu, and H. Bayley. 2002. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 9:829–838.

    Google Scholar 

  187. Braha, O., J. Webb, L. Q. Gu, K. Kim, and H. Bayley. 2005. Carriers versus adapters in stochastic sensing. ChemPhysChem 5:889–892.

    Google Scholar 

  188. Astier, Y., O.Braha, and H. Bayley. 2006. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5’-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128:1705–1710.

    Google Scholar 

  189. Clarke, J., H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley. 2009. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. DOI: 10.1038/nnano.2009.12 </http://dx.doi.org/10.1038/nnano.2009.12.>

  190. Kasianowicz, J. J., D. L. Burden, L. C. Han, S. Cheley, and H. Bayley. 1999. Genetically engineered metal ion binding sites on the outside of a channel’s transmembrane beta-barrel. Biophys. J. 76:837–845.

    Google Scholar 

  191. Siwy, Z., L. Trofin, P. Kohli, L. A. Baker, C. Trautmann, and C. R. Martin. 2005. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127:5000–5001.

    Google Scholar 

  192. Umehara, S., M. Karhanek, R. W. Davis, and N. Pourmand. 2009. Label-free biosensing with functionalized nanopipette probes. Proc. Natl. Acad. Sci. U S A. 106:4611–4616.

    Google Scholar 

  193. Ali, M., B. Yameen, R. Neumann, W. Ensinger, W. Knoll, and W. Azzaroni. 2008. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. facile incorporation of biorecognition elements into nanoconfined Geometries. J. Am. Chem. Soc. 130:16351–16357.

    Google Scholar 

  194. Ali, M., V. Bayer, B. Schiedt, R. Neumann, and A. Ensinger. 2008. Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology. 19:485711–485719.

    Google Scholar 

  195. Wang, J., and C. R. Martin. 2008. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 3:13–20.

    Google Scholar 

  196. Shin, S. H., T. Luchian, S. Cheley, O. Braha, and H. Bayley. 2002. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. Engl. 41:3707–3709.

    Google Scholar 

  197. Saleh, O. A., and L. L. Sohn. 2003. Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc. Natl. Acad. Sci. USA 100:820–824.

    ADS  Google Scholar 

  198. Fologea, D., B. Ledden, D. S. McNabb, and J. Li. 2007. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91:053901(1)–053901(3).

    ADS  Google Scholar 

  199. Halverson, K. M., R. G. Panchal, T. L. Nguyen, R. Gussio, S. F. Little, M. Misakian, S. Bavari, and J. J. Kasianowicz. 2005. Anthrax biosensor, protective antigen ion channel asymmetric blockade. J. Biol. Chem. 280:34056–34062.

    Google Scholar 

  200. Jung, Y., H. Bayley, and L. Movileanu. 2006. Temperature-responsive protein pores. J. Am. Chem. Soc. 128:15332–15340.

    Google Scholar 

  201. Shin, S. H., and H. Bayley. 2005. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127:10462–10463.

    Google Scholar 

  202. Capone, R., S. Blake, M. R. Restrepo, J. Yang, and M. Mayer. 2007. Designing nanosensors based on charged derivatives of gramicidin A. J. Am. Chem. Soc. 129:9737–9745.

    Google Scholar 

  203. Blake, S., R. Capone, M. Mayer, and J. Yang. 2008. Chemically reactive derivatives of gramicidin A for developing ion channel-based nanoprobes. Bioconjugate Chem. 19:1614–1624.

    Google Scholar 

  204. Gu, L. Q., S. Cheley, and H. Bayley. 2003. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl. Acad. Sci. USA 100:15498–15503.

    ADS  Google Scholar 

  205. Ashkenasy, N., J. Sanchez-Quesada, H. Bayley, and M. R. Ghadiri. 2005. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed. Engl. 44: 1401–1404.

    Google Scholar 

  206. Gu, L. Q., S. Cheley, and H. Bayley. 2001. Capture of a single molecule in a nanocavity. Science 291:636–640.

    ADS  Google Scholar 

  207. Mohammad, M. M., S. Prakash, A. Matouschek, and L. Movileanu. 2008. Controlling a single protein in a nanopore through electrostatic traps. J. Am. Chem. Soc. 130:4081–4088.

    Google Scholar 

  208. Wong, C. T., and M. Muthukumar. 2007. Polymer capture by electro-osmotic flow of oppositely charged nanopores. J. Chem. Phys. 126:164903(1)–164903(6).

    ADS  Google Scholar 

  209. Kovarik, M. L., and S. Jacobson, C. 2008. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal. Chem. 80:657–664.

    Google Scholar 

  210. Sanchez-Quesada, J., A. Saghatelian, S. Cheley, H. Bayley, and M. R. Ghadiri. 2004. Single DNA rotaxanes of a transmembrane pore protein. Angew. Chem. Int. Ed. Engl. 43:3063–3067.

    Google Scholar 

  211. Kasianowicz, J. J. 2004. Nanopores—flossing with DNA. Nat. Mater. 3:355–356.

    ADS  Google Scholar 

  212. Keyser, U. F., B. N. Koeleman, S. van Dorp, D. Krapf, R. M. M. Smeets, S. G. Lemay, N. H. Dekker, and C. Dekker. 2006. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2:473–477.

    Google Scholar 

  213. Trepagnier, E. H., A. Radenovic, D. Sivak, P. Geissler, and J. Liphardt. 2007. Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7:2824–2830.

    Google Scholar 

  214. Gershow, M., and J. A. Golovchenko. 2007. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotech. 2:775–779.

    Google Scholar 

  215. Sung, W., and P. J. Park. 1996. Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 77:783–786.

    ADS  Google Scholar 

  216. Chuang, J., Y. Kantor, and M. Kardar. 2001. Anomalous dynamics of translocation. Phys Rev E 65:011802(1)–011802(8).

    ADS  Google Scholar 

  217. Lubensky, D. K., and D. R. Nelson. 1999. Driven polymer translocation through a narrow pore. Biophys. J. 77:1824–1838.

    ADS  Google Scholar 

  218. Muthukumar, M. 2203. Polymer escape through a nanopore. J. Chem. Phys. 118:5174.

    Google Scholar 

  219. Storm, A. J., C. Storm, J. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker. 2005. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5:1193–1197.

    ADS  Google Scholar 

  220. Sikorski, A., and P. Romiszowski. 2005. Computer simulation of polypeptide translocation through a nanopore. J. Mol. Model. 11:379–384.

    Google Scholar 

  221. Heng, J. B., C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y. V. Grinkova, S. Sligar, K. Schulten, and G. Timp. 2004. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87:2905–2911.

    ADS  Google Scholar 

  222. Martin, H., H. Kinns, N. Mitchell, Y. Astier, R. Madathil, and S. Howorka. 2007. Nanoscale protein pores modified with PAMAM dendrimers. J. Am. Chem. Soc. 129:9640–9649.

    Google Scholar 

  223. Rousselet, J., L. Salome, A. Ajdari, and J. Prost. 1994. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370:446–448.

    ADS  Google Scholar 

  224. Fu, J. P., P. Mao, and J. Y. Han. 2005. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87:263902(1)–263902(3).

    ADS  Google Scholar 

  225. Fu, J. P., R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Y. Han. 2007. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2:121–128.

    ADS  Google Scholar 

  226. Han, J., S. W. Turner, and H. G. Craighead. 1999. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys. Rev. Lett. 83:1688–1691.

    ADS  Google Scholar 

  227. Huang, L. R., P. Silberzan, J. O. Tegenfeldt, E. C. Cox, J. C. Sturm, R. H. Austin, and H. Craighead. 2002. Role of molecular size in ratchet fractionation. Phys. Rev. Lett. 89:178301(1)–178301(4).

    ADS  Google Scholar 

  228. Astumian, R. D., and P. Hanggi. 2002. Brownian motors. Phys. Today 55:33–39.

    Google Scholar 

  229. Chou, C. F., O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H. G. Craighead, and R. H. Austin. 1999. Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation. Proc. Natl. Acad. Sci. USA 96:13762–13765.

    ADS  Google Scholar 

  230. van Oudenaarden, A., and S. G. Boxer. 1999. Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285:1046–1048.

    Google Scholar 

  231. Han, J. Y., J. P. Fu, and R. B. Schoch. 2008. Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33.

    Google Scholar 

  232. Chun, K. Y., and P. Stroeve. 2002. Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658.

    Google Scholar 

  233. Ku, J. R., and P. Stroeve. 2004. Protein diffusion in charged nanotubes: “On-Off” behavior of molecular transport. Langmuir 20:2030–2032.

    Google Scholar 

  234. Saksena, S., and A. L. Zydney. 1994. Effect of solution pH and ionic-strength on the separation of albumin from immunoglobulins (Igg) by selective filtration. Biotechnol. Bioeng. 43:960–968.

    Google Scholar 

  235. Pujar, N. S., and A. L. Zydney. 1998. Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. J. Chromatogr. A 796:229–238.

    Google Scholar 

  236. Burns, D. B., and A. L. Zydney. 2000. Buffer effects on the zeta potential of ultrafiltration membranes. J. Membrane Sci. 172:39–48.

    Google Scholar 

  237. Ramirez, P., A. Alcaraz, and S. Mafe. 2003. Uphill transport of amino acids through fixed charged membranes. In Encyclopedia of surface and colloid science. A. Hubbard, editor. Marcel Dekker, New York, pp. 1–12.

    Google Scholar 

  238. Ku, J. R., S. M. Lai, N. Ileri, P. Ramirez, S. Mafe, and P. Stroeve. 2007. pH and ionic strength effects on aminmino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J. Phys. Chem. C 111:2965–2973.

    Google Scholar 

  239. Savariar, E. N., K. Krishnamoorthy, and S. Thayumanavan. 2008. Molecular discrimination inside polymer nanotubules. Nat. Nanotechnol. 3:112–117.

    ADS  Google Scholar 

  240. Mitchell, D. T., S. B. Lee, L. Trofin, N. C. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin. 2002. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124:11864–11865.

    Google Scholar 

  241. Volkmuth, W. D., and R. H. Austin. 1992. DNA electrophoresis in microlithographic arrays. Nature 358:600–602.

    ADS  Google Scholar 

  242. Striemer, C. C., T. R. Gaborski, J. L. McGrath, and P. M. Fauchet. 2007. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–753.

    ADS  Google Scholar 

  243. Yu, S. F., S. B. Lee, M. Kang, and C. R. Martin. 2001. Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett. 1:495–498.

    ADS  Google Scholar 

  244. Biesheuvel, P. M., P. Stroeve, and P. A. Barneveld. 2004. Effect of protein adsorption and ionic strength on the equilibrium partition coefficient of ionizable macromolecules in charged nanopores. J. Phys. Chem. B 108:17660–17665.

    Google Scholar 

  245. Schoch, R. B., and P. Renaud. 2005. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 86:25311(1)–253111(4).

    Google Scholar 

  246. Lakshmi, B. B., and C. R. Martin. 1997. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388:758–760.

    ADS  Google Scholar 

  247. Kuo, T. C., D. M. Cannon, Y. N. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, and P. W. Bohn. 2003. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal. Chem. 75:1861–1867.

    Google Scholar 

  248. Flachsbart, B. R., K. Wong, J. M. Iannacone, E. N. Abante, R. L. Vlach, P. A. Rauchfuss, P. W. Bohn, J. V. Sweedler, and M. A. Shannon. 2006. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674.

    Google Scholar 

  249. Beck, R. E., and J. S. Schultz. 1970. Hindered diffusion in microporous membranes with known pore geometry. Science 170:1302–1305.

    ADS  Google Scholar 

  250. Steinle, E. D., D. T. Mitchell, M. Wirtz, S. B. Lee, V. Y. Young, and C. R. Martin. 2002. Ion channel mimetic micropore and nanotube membrane sensors. Anal. Chem. 74:2416–2422.

    Google Scholar 

  251. Lee, S. B., and C. R. Martin. 2002. Electromodulated molecular transport in gold-nanotube membranes. J. Am. Chem. Soc. 124:11850–11851.

    Google Scholar 

  252. Martin, C. R. 1994. Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966.

    ADS  Google Scholar 

  253. Martin, C. R., M. Nishizawa, K. Jirage, and M. Kang. 2001. Investigations of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105:1925–1934.

    Google Scholar 

  254. Kang, M. S., and C. R. Martin. 2001. Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method. Langmuir 17:2753–2759.

    Google Scholar 

  255. Lee, S. B., and C. R. Martin. 2001. pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. Anal. Chem. 73:768–775.

    Google Scholar 

  256. Kittilsland, G., G. Stemme, and B. Norden. 1990. A submicron particle filter in silicon. Sensor. Actuat. A Phys. 23:904–907.

    Google Scholar 

  257. Desai, T. A., D. Hansford, and M. Ferrari. 1999. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Membrane Sci. 159:221–231.

    Google Scholar 

  258. Nishizawa, M., V. P. Menon, and C. R. Martin. 1995. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science. 268:700–702

    ADS  Google Scholar 

  259. Plecis, A., R. B. Schoch, and P. Renaud. 2005. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5:1147–1155.

    ADS  Google Scholar 

  260. Stein, D., M. Kruithof, and C. Dekker. 2004. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93:035901(1)–035901(4).

    ADS  Google Scholar 

  261. Gu, L. Q., M. Dalla Serra, J. B. Vincent, G. Vigh, S. Cheley, O. Braha, and H. Bayley. 2000. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc. Natl. Acad. Sci. USA 97:3959–3964.

    ADS  Google Scholar 

  262. Alcaraz, A., E. M. Nestorovich, M. Aguilella-Arzo, V. M. Aguilella, and S. M. Bezrukov. 2004. Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys. J. 87:943–957.

    Google Scholar 

  263. Schoch, R. B., J. Han, and P. Renaud. 2008. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80:839–883.

    Google Scholar 

  264. Liu, Y. L., M. Q. Zhao, D. E. Bergbreiter, and R. M. Crooks. 1997. pH-switchable, ultrathin permselective membranes prepared from multilayer polymer composites. J. Am. Chem. Soc. 119: 8720–8721.

    Google Scholar 

  265. van der Heyden, F. H. J., D. Stein, K. Besteman, S. G. Lemay, and C. Dekker. 2006. Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96:224502–224505.

    ADS  Google Scholar 

  266. Alcaraz, A., E. M. Nestorovich, M. L. Lopez, E. Garcia-Gimenez, S. M. Bezrukov, and V. M. Aguilella. 2009. Diffusion, exclusion, and specific binding in a large channel: A study of OmpF selectivity inversion. Biophys. J. 96:56–66.

    Google Scholar 

  267. He, Y., D. Gillespie, I. Boda, I. Vlassiouk, R. S. Eisenberg, and Z. Siwy. 2009. Tuning transport properties of nanofluidic devices with local charge inversion. J. Am. Chem. Soc. 131:5194–5202.

    Google Scholar 

  268. Shklovskii, B. I. 1999. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60:5802–5811.

    ADS  Google Scholar 

  269. Daiguji, H., Y. Oka, and K. Shirono. 2005. Nanofluidic diode and bipolar transistor. Nano Lett. 5: 2274–2280.

    ADS  Google Scholar 

  270. Alcaraz, A., P. Ramirez, E. Garcia-Gimenez, M. L. Lopez, A. Andrio, and V. M. Aguilella. 2006. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. J. Phys. Chem. B 110:21205–21209.

    Google Scholar 

  271. Schasfoort, R. B. M., S. Schlautmann, L. Hendrikse, and A. van den Berg. 1999. Field-effect flow control for microfabricated fluidic networks. Science 286:942–945.

    Google Scholar 

  272. Fan, R., M. Yue, R. Karnik, A. Majumdar, and P. D. Yang. 2005. Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95:086607(1)–086607(4).

    ADS  Google Scholar 

  273. Fan, R., Y. Y. Wu, D. Y. Li, M. Yue, A. Majumdar, and P. D. Yang. 2003. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 125:5254–5255.

    Google Scholar 

  274. Karnik, R., R. Fan, M. Yue, D. Y. Li, P. D. Yang, and A. Majumdar. 2005. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5:943–948.

    ADS  Google Scholar 

  275. Karnik, R., K. Castelino, and A. Majumdar. 2006. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88:123114(1)–123114(3).

    ADS  Google Scholar 

  276. Kalman, E. B., O. Sudre, I. Vlassiouk, and Z. Siwy. 2009. Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem. DOI: 10.1007/s00216-008-2545-3

    Google Scholar 

  277. Kalman, E. B., I. Vlassiouk, and Z. S. Siwy. 2008. Nanofluidic bipolar transistors. Adv. Mater. 20:293–297.

    Google Scholar 

  278. Ito, T., L. Sun, and R. M. Crooks. 2003. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter. Anal. Chem. 75:2399–2406.

    Google Scholar 

  279. Hinds, B. J., N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas. 2004. Aligned multiwalled carbon nanotube membranes. Science 303:62–65.

    ADS  Google Scholar 

  280. Holt, J. K., H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin. 2005. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037.

    ADS  Google Scholar 

  281. Wan, R., J. Li, H. Lu, and H. Fang. 2005. Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 127:7166–7170.

    Google Scholar 

  282. Rasaiah, J. C., S. Garde, and G. Hummer. 2008. Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59:713–740.

    ADS  Google Scholar 

  283. Fornasiero, F., H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos, A. Noy, and O. Bakajin. 2008. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 105:17250–17255.

    ADS  Google Scholar 

  284. Yeh, I. C., and G. Hummer. 2004. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA 101:12177–12182.

    ADS  Google Scholar 

  285. Blow, N. 2008. DNA sequencing: generation next-next. Nat. Methods 5:267–272.

    Google Scholar 

  286. Hemmler, R., G. Bose, R. Wagner, and R. Peters. 2005. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88:4000–4007.

    Google Scholar 

  287. Bruckbauer, A., P. James, D. Zhou, J. W. Yoon, D. Excell, Y. Korchev, R. Jones, and D. Klenerman. 2007. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking. Biophys. J. 93:3120–3131.

    ADS  Google Scholar 

  288. Zwolak, M., and M. Di Ventra. 2005. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5:421–424.

    ADS  Google Scholar 

  289. Lagerqvist, J., M. Zwolak, and M. Di Ventra. 2007. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93:2384–2390.

    ADS  Google Scholar 

  290. Sigalov, G., J. Comer, G. Timp, and A. Aksmentiev. 2008. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8:56–63.

    ADS  Google Scholar 

  291. Liang, X. G., and S. Y. Chou. 2008. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 8:1472–1476.

    ADS  Google Scholar 

  292. Fischbein, M. D., and M. Drndic. 2007. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7:1329–1337.

    Google Scholar 

  293. Tsutsui, M., M. Taniguchi, and T. Kawai. 2009. Transverse field effects on DNA-sized particle dynamics. Nano Lett. 9:1659–1662.

    Google Scholar 

  294. Su, X. D., and A. A. Berlin. 2006. Method and apparatus for nucleic acid sequencing and identification. U.S. Patent No. 2006019247.

    Google Scholar 

  295. Smeets, R. M., U. F. Keyser, N. H. Dekker, and C. Dekker. 2008. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 105:417–421.

    ADS  Google Scholar 

  296. Uram, J. D., K. Ke, and M. Mayer. 2008. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2:857–872.

    Google Scholar 

  297. Vlassiouk, I., S. Smirnov, and Z. Siwy. 2008. Nanofluidic ionic diodes. comparison of analytical and numerical solutions. ACS Nano. 2:1589–1602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Howorka, S., Siwy, Z. (2009). Nanopores: Generation, Engineering, and Single-Molecule Applications. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_11

Download citation

Publish with us

Policies and ethics