Skip to main content

Prodrugs of Phosphonates, Phosphinates, and Phosphates

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

The aim of this chapter is to review the recent progress in the design and development of prodrugs of phosphonate, phosphinate, and phosphate functional groups to improve their physicochemical properties, membrane permeability, oral bioavailability, and drug targeting. Phosphonates, phosphinates, and phosphates are prominently represented as pharmacophores in various classes of biological agents. These include antiviral and anticancer nucleotides, inhibitors of biosynthesis of cholesterol, angiotensin-converting enzyme inhibitors, and bisphosphonates for the treatment of osteoporosis. It is generally well recognized that the therapeutic potential of drugs containing a phosphonate, phosphonate, or phosphate functional group is limited by their inadequate membrane permeation and oral absorption. Phosphonate, phosphinate, and phosphate groups carry one or two negative charges at physiological pH values making them very polar (Figure 1). This high polarity is the basis for many deficiencies in terms of drug delivery. Specifically, ionized species do not readily undergo passive diffusion across cellular membranes. Because of their high polarity, these agents often exhibit a low volume of distribution and, therefore, tend to be subject to efficient renal clearance as well as possibly biliary excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams DI, Goldman AI, Launer C, Korvick JA, Neaton JD, Crane LR, Grodesky M, Wakefield S, Muth K, Kornegay S, Cohn DL, Harris A, Luskin-Hawk R, Markowitz N, Sampson JH, Thompson M, Deyton L, and AIDS TTBCPfCRo. A Comparative Trial of Didanosine or Zalcitabine after Treatment with Zidovudine in Patients with Human Immunodeficiency Virus Infection. N Engl J Med 1994; 330:657–662

    Article  PubMed  CAS  Google Scholar 

  • Arimilli M, Kim C, and Bischofberger N. Synthesis, in Vitro Biological Evaluation and Oral Bioavailability of 9-[2-(Phosphonomethoxy)Propyl]Adenine (PMPA) Prodrugs. Antivir Chem Chemother 1997; 8:557–564

    CAS  Google Scholar 

  • Ballatore C, McGuigan C, De Clercq E and, Balzarini J. Synthesis and Evaluation of Novel Amidate Prodrugs of PMEA and PMPA. Bioorg Med Chem Lett 2001; 11:1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J, Cooney DA, Dalal M, Kang G-J, Cupp JE, De Clercq E, Broder S, and Johns DG. 2′,3′-Dideoxycytidine: Regulation of Its Metabolism and Anti-Retroviral Potency by Natural Pyrimidine Nucleosides and by Inhibitors of Pyrimidine Nucleotide Synthesis. Mol Pharmacol 1987; 32:798–806

    PubMed  CAS  Google Scholar 

  • Balzarini J, Holý A, Jindrich J, Naesens L, Snoeck R, Schols D, and De Clercq E. Differential Antiherpesvirus and Antiretrovirus Effects of the (S) and (R) Enantiomers of Acyclic Nucleoside Phosphonates: Potent and Selective In Vitro and In Vivo Antiretrovirus Activities of (R)-9-(2-Phosphonomethoxypropyl)-2,6-Diaminopurine. Antimicrob Agents Chemother 1993; 37:332–338

    PubMed  CAS  Google Scholar 

  • Benzaria S, Pelicano H, Johnson R, Maury G, Imbach J-L, Aubertin A-M, Obert G, and Gosselin G. Synthesis, in Vitro Antiviral Evaluation, and Stability Studies of Bis(S-Acyl-2-thioethyl) Ester Derivatives of 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA) as Potential PMEA Prodrugs with Improved Oral Bioavailability. J Med Chem 1996; 39:4958–4965

    Article  PubMed  CAS  Google Scholar 

  • Bischofberger N, Hitchcock MJM, Chen MS, Barkhimer DB, Cundy KC, Kent KM, Lacy SA, Lee WA, Li Z-H, Mendel DB, Smee DF, and Smith JL. 1-[((S)-2-Hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl)methyl] Cytosine, an Intracellular Prodrug for (S)-1-(3-Hydroxy-2-Phosphonylmethoxypropyl) cytosine with Improved Therapeutic Index In Vivo. Antimicrob Agents Chemother 1994; 38:2387–2391

    PubMed  CAS  Google Scholar 

  • Boniva® (ibandronate sodium) tablets. US Prescribing Information. Roche Laboratories Inc., Nutley, NJ. March 2005

    Google Scholar 

  • Cahard D, McGuigan C, and Balzarini J. Aryloxy Phosphoramidate Triesters as Pro-Tides. Mini Rev Med Chem 2004; 4:371–381

    PubMed  CAS  Google Scholar 

  • Chen H, Noble F, Roques BP, and Fournie-Zaluski M-C. Long Lasting Antinociceptive Properties of Enkephalin Degrading Enzyme (NEP and APN) Inhibitor Prodrugs. J Med Chem 2001; 44:3523–3530

    Article  PubMed  CAS  Google Scholar 

  • Ciesla SL, Trahan J, Wan WB, Beadle JR, Aldern KA, Painter GR, and Hostetler KY. Esterification of Cidofovir with Alkoxyalkanols Increases Oral Bioavailability and Diminishes Drug Accumulation in Kidney. Antiviral Res 2003; 59:163–171

    Article  PubMed  CAS  Google Scholar 

  • Colin B, Jones NM, McGuigan C, and Riley PA. Synthesis and Biological Evaluation of Some Phosphate Triester Derivatives of the Anti-Cancer Drug araC. Nucleic Acids Res 1989; 17:7195–201

    Article  CAS  Google Scholar 

  • Cooney DA, Dalal M, Mitsuya H, McMahon JB, Nadkarni M, Balzarini J, Broder S, and Johns DG. Initial Studies on the Cellular Pharmacology of 2′,3′-Dideoxycytidine, an Inhibitor of HTLV-III Infectivity. Biochem Pharmacol 1986; 35:2065–2068

    Article  PubMed  CAS  Google Scholar 

  • Cundy KC (1999). Clinical Anti-HIV Activity of Tenofovir Disoproxil Fumarate Correlates with Intracellular Drug Levels (Abstract 318). 7th European Conference on Clinical Aspects and Treatment of HIV Infection, Lisbon, Portugal, Poster 318

    Google Scholar 

  • Cundy KC, Fishback JA, Shaw J-P, Lee ML, Soike KF, Visor GC, and Lee WA. Oral Bioavailability of the Antiretroviral Agent 9-(2-Phosphonylmethoxyethyl) adenine (PMEA) from Three Formulations of the Prodrug Bis(Pivaloyloxymethyl)-PMEA in Fasted Male Cynomolgus Monkeys. Pharm Res 1994; 11:839–843

    Article  PubMed  CAS  Google Scholar 

  • Cundy KC, Bidgood AM, Lynch G, Shaw J-P, Griffin L, and Lee WA. Pharmacokinetics, Bioavailability, Metabolism, and Tissue Distribution of Cidofovir (HPMPC) and Cyclic HPMPC in Rats. Drug Metab Dispos 1996; 24:745–752

    PubMed  CAS  Google Scholar 

  • De Clercq E, Holý A, Rosenberg I, Sakuma T, Balzarini J, and Maudgal PC. A Novel Selective Broad-Spectrum Anti-DNA Virus Agent. Nature 1986; 323:464–467

    Article  PubMed  Google Scholar 

  • De Clercq E, Sakuma T, Baba M, Pauwels R, Balzarini J, Rosenberg I, and Hol A. Antiviral Activity of Phosphonylmethoxyalkyl Derivatives of Purine and Pyrimidines. Antiviral Res 1987; 8:261–272

    Article  PubMed  Google Scholar 

  • Eisenberg EJ, He G-X, and Lee WA. Metabolism of GS-7340, a Novel Phenyl Monophosphoramidate Intracellular Prodrug of PMPA, in Blood. Nucleosides Nucleotides Nucleic Acids 2001; 20:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Erion MD, Reddy KR, Boyer SH, Matelich MC, Gomez-Galeno J, Lemus RH, Ugarkar BG, Colby TJ, Schanzer J, and van Poelje PD. Design, Synthesis, and Characterization of a Series of Cytochrome P450 3A-Activated Prodrugs (Hepdirect Prodrugs) Useful for Targeting Phosph(on)ate-Based Drugs to the Liver. J Amer Chem Soc 2004; 126:5154–5163

    Article  CAS  Google Scholar 

  • Fosamax® (alendronate sodium) tablets and oral solution. US Prescribing Information. Merck & Co., Inc., Whitehouse Station, NJ. December 2004

    Google Scholar 

  • Freed JJ, Farquhar D, and Hampton A. Evidence for Acyloxymethyl Esters of Pyrimidine 5′-Deoxyribonucleotides as Extracellular Sources of Active 5′-Deoxyribonucleotides in Cultured Cells. Biochem Pharmacol 1989; 38:3193–3198

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, and Ross KC. Prodrug Design for Phosphates and Phosphonates. In: Ellis GP and Luscombe DK. Progress in Medicinal Chemistry. Elsevier Science B.V., 1997; 34:111–147

    Google Scholar 

  • Friedman DI, and Amidon GL. Passive and Carrier-mediated Intestinal Absorption Components of Two Angiotensin Converting Enzyme (ACE) Inhibitor Prodrugs in Rats: Enalapril and Fosinopril. Pharm Res 1989; 6:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Hadziyannis SJ, Tassopoulos N, Heathcote EJ, Chang T-T, Kitis G, Rizzetto M, Marcellin P, Lim SG, Goodman Z, Wulfsohn MS, Xiong S, Fry J, Brosgart C, and Adefovir Dipivoxil 438 Study Group. Adefovir Dipivoxil for the Treatment of Hepatitis B e Antigen-negative Chronic Hepatitis B. N Engl J Med 2003; 348:800–807

    Article  PubMed  CAS  Google Scholar 

  • Hepsera® (Adefovir Dipivoxil) Tablets. US Prescribing Information. Gilead Sciences, Inc. Foster City, CA. September 2002

    Google Scholar 

  • Hitchcock MJM, Lacy S, Lindsey J, and Kern E. The Cyclic Congener of Cidofovir Has Reduced Nephrotoxicity in Three Species. Antiviral Res 1995; 26:A358

    Article  Google Scholar 

  • Hitchcock MJM, Jaffe HS, Martin JC, and Stagg RJ. Cidofovir, A New Agent with Potent Anti-Herpesvirus Activity. Antivir Chem Chemother 1996; 7:115–127

    CAS  Google Scholar 

  • Iyer R, Phillips LR, Biddle JA, Thakker DR, and Egan W. Synthesis of Acyloxyalkyl Acylphosphonates as Potential Prodrugs of the Antiviral, Trisodium Phosphonoformate (Foscarnet Sodium). Tetrahedron Letters 1989; 30:7141–7144

    Article  CAS  Google Scholar 

  • Johnson MA, and Fridland A. Phosphorylation of 2′,3′-Dideoxyinosine by Cytosolic 5′-Nucleotidase of Human Lymphoid Cells. Mol Pharmacol 1989; 36:291–295

    PubMed  CAS  Google Scholar 

  • Jones RJ, and Bischofberger N. Minireview: Nucleotide Prodrugs. Antiviral Res 1995; 27:1–17

    Article  PubMed  CAS  Google Scholar 

  • Kelly SJ, and Butler LG. Enzymic Hydrolysis of Phosphonate Esters. Reaction Mechanism of Intestinal 5′-Nucleotide Phosphodiesterase. Biochemistry 1977; 16:1102–1104

    Article  PubMed  CAS  Google Scholar 

  • Kelly SJ, Dardinger DE, and Butler LG. Hydrolysis of Phosphonate Esters Catalyzed by 5′-Nucleotide Phosphodiesterase. Biochemistry 1975; 14:4983–4988

    Article  PubMed  CAS  Google Scholar 

  • Lee WA, He G-X, Eisenberg E, Cihlar T, Swaminathan S, Mulato A, and Cundy KC. Selective Intracellular Activation of a Novel Prodrug of the Human Immunodeficiency Virus Reverse Transcriptase Inhibitor Tenofovir Leads to Preferential Distribution and Accumulation in Lymphatic Tissue. Antimicrob Agents Chemother 2005; 49:1898–1906

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre I, Perigaud C, Pompon A, Aubertin A-M, Girardet J-L, Kirn A, Gosselin G, and Imbach J-L. Mononucleoside Phosphotriester Derivatives with S-Acyl-2-thioethyl Bioreversible Phosphate-Protecting Groups: Intracellular Delivery of 3′-Azido-2′,3′-Dideoxythymidine 5′-Monophosphate. J Med Chem 1995; 38:3941–3950

    Article  PubMed  CAS  Google Scholar 

  • LePage GA, Naik SR, Katakkar SB, and Khaliq A. 9-β-D-Arabinofuranosyladenine 5′-Phosphate Metabolism and Excretion in Humans. Cancer Res 1975; 35:3036–3040

    PubMed  CAS  Google Scholar 

  • McGuigan C, Shackleton JM, Tollerfield SM, and Riley PA. Synthesis and Evaluation of Some Novel Phosphate and Phosphinate Derivatives of araA. Studies on the Mechanism of Action of Phosphate Triesters. Nucleic Acids Res 1989a; 17:10171–10177

    Article  PubMed  CAS  Google Scholar 

  • McGuigan C, Tollerfield SM, and Riley PA. Synthesis and Biological Evaluation of Some Phosphate Triester Derivatives of the Anti-Viral Drug araA. Nucleic Acids Res 1989b; 17:6065–6075

    Article  PubMed  CAS  Google Scholar 

  • McGuigan C, Nicholls SR, O’Connor TJ, and Kinchington D. Synthesis of Some Novel Dialkyl Phosphate Derivatives of 3′-Modified Nucleosides as Potential Anti-AIDS Drugs. Antivir Chem Chemother 1990a; 1:25–33

    CAS  Google Scholar 

  • McGuigan C, O’Connor TJ, Nicholls SR, Nickson C, and Kinchington D. Synthesis and Anti-HIV Activity of Some Novel Substituted Dialkyl Phosphate Derivatives of AZT and ddCyd. Antivir Chem Chemother 1990b; 1:355–360

    CAS  Google Scholar 

  • McGuigan C, Jones BCNM, Tollerfield SM, and Riley PA. Synthesis and Biological Evaluation of Haloalkyl Phosphate Triester Derivatives of araA and araC. Antivir Chem Chemother 1992a; 3:79–94

    Google Scholar 

  • McGuigan C, Nickson C, Petrik J, and Karpas A. Phosphate Derivatives of AZT Display Enhanced Selectivity of Action against HIV 1 by Comparison to the Parent Nucleoside. FEBS Lett 1992b; 310:171–174

    Article  PubMed  CAS  Google Scholar 

  • McGuigan C, Kinchington D, Wang MF, Nicholls SR, Nickson C, Galpin S, Jeffries DJ, and O’Connor TJ. Nucleoside Analogues Previously Found to Be Inactive against HIV May Be Activated by Simple Chemical Phosphorylation. FEBS Lett 1993; 322:249–252

    Article  PubMed  CAS  Google Scholar 

  • McGuigan C, Cahard D, Sheeka H, De Clercq E, and Balzarini J. Aryl Phosphoramidate Derivatives of d4T Have Improved Anti-HIV Efficacy in Tissue Culture and May Act by the Generation of a Novel Intracellular Metabolite. J Med Chem 1996; 39:1748–1753

    Article  PubMed  CAS  Google Scholar 

  • Meier C. Cyclosal-Pronucleotides—Design of Chemical Trojan Horses. Mini Rev Med Chem 2002; 2:219–234

    Article  PubMed  CAS  Google Scholar 

  • Meier C, Knispel T, De Clercq E, and Balzarini J. Cyclosal-Pronucleotides of 2′,3′-Dideoxyadenosine and 2′,3′-Dideoxy-2′,3′-Didehydroadenosine: Synthesis and Antiviral Evaluation of a Highly Efficient Nucleotide Delivery System. J Med Chem 1999; 42:1604–1614

    Article  PubMed  CAS  Google Scholar 

  • Mendel DB, Cihlar T, Moon K, and Chen MS. Conversion of 1-[((S)-2-Hydroxy-2-oxo-1,4,2-Dioxaphosphorinan-5-Yl)Methyl]Cytosine to Cidofovir by an Intracellular Cyclic CMP Phosphodiesterase. Antimicrob Agents Chemother 1997; 41:641–646

    PubMed  CAS  Google Scholar 

  • Mitchell AG, Thomson W, Nicholls D, Irwin WJ, and Freeman S. Bioreversible Protection for the Phospho Group: Bioactivation of the Di(4-Acyloxybenzyl) and Mono(4-Acyloxybenzyl) Phosphoesters of Methylphosphonate and Phosphonoacetate. J Chem Soc Perkin Trans 1 1992; 2345–2353

    Google Scholar 

  • Morrison RA, Singhvi SM, Peterson AE, Pocetti DA, and Migdalof BH. Relative Contribution of the Gut, Liver, and Lung to the First-Pass Hydrolysis (Bioactivation) of Orally Administered 14c-Fosinopril Sodium in Dogs. In Vivo and In Vitro Studies. Drug Metab Dispos 1990; 18:253–257

    PubMed  CAS  Google Scholar 

  • Mullah KB, Rao TS, Balzarini J, De Clercq E, and Bentrude WG. Potential Prodrug Derivatives of 2′,3′-Didehydro-2′,3′-Dideoxynucleosides. Preparations and Antiviral Activities. J Med Chem 1992; 35:2728–2735

    Article  PubMed  CAS  Google Scholar 

  • Naesens L, Balzarini J, Alexander P, Holy A, and De Clercq E. Antiretroviral Efficacy and Pharmacokinetics of Ester Prodrugs of 9-(2-Phosphonylmethoxyethyl) adenine (PMEA). Antiviral Res 1994; 23:64. Abstract 56

    Google Scholar 

  • Neil GL, Wiley PF, Manak RC, and Moxley TE. Antitumor Effect of 1-β-D-Arabinofuranosylcytosine 5′-adamantoate (NSC 117614) in L1210 Leukemic Mice. Cancer Res 1970; 30:1047–1054

    PubMed  CAS  Google Scholar 

  • Niemi R, Turhanen P, Vepsalainen J, Taipale H and Jarvinen T. Bisphosphonate Prodrugs: Synthesis and In Vitro Evaluation of Alkyl and Acyloxymethyl Esters of Etidronic Acid as Bioreversible Prodrugs of Etidronate. Eur J Pharm Sci. 2000; 11:173–180

    Article  PubMed  CAS  Google Scholar 

  • Oliyai R, Shaw J-P, Sueoka-Lennen CM, Cundy KC, Arimilli MN, Jones RJ, and Lee WA. Aryl Ester Prodrugs of Cyclic HPMPC. I: Physicochemical Characterization and In Vitro Biological Stability. Pharm Res 1999; 16:1687–1693

    Article  PubMed  CAS  Google Scholar 

  • Oliyai R, Arimilli MN, Jones RJ, and Lee WA. Pharmacokinetics of Salicylate Ester Prodrugs of Cyclic HPMPC in Dogs. Nucleosides Nucleotides Nucleic Acids 2001; 20:1411–1414

    Article  PubMed  CAS  Google Scholar 

  • Painter GR, and Hostetler KY. Design and Development of Oral Drugs for the Prophylaxis and Treatment of Smallpox Infection. Trends Biotechnol 2004; 22:423–427

    Article  PubMed  CAS  Google Scholar 

  • Peyrottes S, Egron D, Lefebvre I, Gosselin G, Imbach JL, and Perigaud C. SATE Pronucleotide Approaches: An Overview. Mini Rev Med Chem 2004; 4:395–408

    PubMed  CAS  Google Scholar 

  • Pompon A, Lefebvre I, Imbach J-L, Kahn S, and Farquhar D. Decomposition Pathways of the Mono-and Bis(Pivaloyloxymethyl) Esters of Azidothymidine 5′-Monophosphate in Cell Extract and in Tissue Culture Medium: An Application of the ‘On-Line ISRP-Cleaning’ HPLC Technique. Antivir Chem Chemother 1994; 5:91–98

    CAS  Google Scholar 

  • Puech F, Gosselin G, Lefebvre I, Pompon A, Aubertin A-M, Kirn A, and Imbach JL. Intracellular Delivery of Nucleoside Monophosphates through a Reductase-Mediated Activation Process. Antiviral Res 1993; 22:155–174

    Article  PubMed  CAS  Google Scholar 

  • Quenelle DC, Collins DJ, Wan WB, Beadle JR, Hostetler KY, and Kern ER. Oral Treatment of Cowpox and Vaccinia Virus Infections in Mice with Ether Lipid Esters of Cidofovir. Antimicrob Agents Chemother 2004; 48:404–412

    Article  PubMed  CAS  Google Scholar 

  • Ranadive SA, Chen AX, and Serajuddin AT. Relative Lipophilicities and Structural-Pharmacological Considerations of Various Angiotensin-Converting Enzyme (ACE) Inhibitors. Pharm Res 1992; 9:1480–1486

    Article  PubMed  CAS  Google Scholar 

  • Reichard P, Skold O, Klein G, Revesz L, and Magnusson P-H. Studies on Resistance against 5-Fluorouracil. I. Enzymes of the Uracil Pathway During Development of Resistance. Cancer Res 1962; 22:235–243

    PubMed  CAS  Google Scholar 

  • Rosowsky A, Kim SH, Ross J, and Wick MM. Lipophilic 5′-(Alkyl Phosphate) Esters of 1-Beta-D-Arabinofuranosylcytosine and Its N4-Acyl and 2,2′-Anhydro-3′-OAcyl Derivatives as Potential Prodrugs. J Med Chem 1982; 25:171–178

    Article  PubMed  CAS  Google Scholar 

  • Sastry JK, Nehete PN, Khan S, Nowak BJ, Plunkett W, Arlinghaus RB, and Farquhar D. Membrane-Permeable Dideoxyuridine 5′-Monophosphate Analogue Inhibits Human Immunodeficiency Virus Infection. Mol Pharmacol 1992; 41:441–445

    PubMed  CAS  Google Scholar 

  • Schrecker AW, and Goldin A. Antitumor Effect and Mode of Action of 1-β-D-Arabinofuranosylcytosine 5′-Phosphate in Leukemia L1210. Cancer Res 1968; 28:802–803

    PubMed  CAS  Google Scholar 

  • Serafinowska HT, Ashton RJ, Bailey S, Harnden MR, Jackson SM, and Sutton D. Synthesis and In Vivo Evaluation of Prodrugs of 9-[2-(Phosphonomethoxy) ethoxy]adenine. J Med Chem 1995; 38:1372–1379

    Article  PubMed  CAS  Google Scholar 

  • Shaw J-P, and Cundy KC. Biological Screens of PMEA Prodrugs. Pharm Res 1993; 10:S294

    Article  Google Scholar 

  • Shaw J-P, Louie MS, Krishnamurthy VV, Arimilli MN, Jones RJ, Bidgood AM, Lee WA, and Cundy KC. Pharmacokinetics and Metabolism of Selected Prodrugs of PMEA in Rats. Drug Metab Dispos 1997a; 25:362–366

    PubMed  CAS  Google Scholar 

  • Shaw J-P, Sueoka CM, Oliyai R, Lee WA, Arimilli MN, Kim CU, and Cundy KC. Metabolism and Pharmacokinetics of Novel Oral Prodrugs of 9-[(R)-2-(Phosphonomethoxy)propyl]adenine (PMPA) in Dogs. Pharm Res 1997b; 14:1824–1829

    Article  PubMed  CAS  Google Scholar 

  • Srinivas RV, Robbins BL, Connelly MC, Gong Y-F, Bischofberger N, and Fridland A. Metabolism and In Vitro Antiretroviral Activities of Bis(Pivaloyloxymethyl) Prodrugs of Acyclic Nucleoside Phosphonates. Antimicrob Agents Chemother 1993; 37:2247–2250

    PubMed  CAS  Google Scholar 

  • Starrett JE, Jr, Tortolani DR, Hitchcock MJM, Martin JC, and Mansuri MM. Synthesis and In Vitro Evaluation of a Phosphate Prodrug: Bis(Pivaloyloxymethyl) 9-(2-Phosphonylmethoxyethyl)adenine. Antiviral Res 1992; 19:267–273

    Article  PubMed  CAS  Google Scholar 

  • Starrett JE, Jr, Tortolani DR, Russell J, Hitchcock MJM, Whiterock V, Martin JC, and Mansuri MM. Synthesis, Oral Bioavailability Determination, and In Vitro Evaluation of Prodrugs of the Antiviral Agent 9-[2-(Phosphonomethoxy) ethyl]adenine (PMEA). J Med Chem 1994; 37:1857–1864

    Article  PubMed  CAS  Google Scholar 

  • Thomson W, Nicholls D, Irwin WJ, Al-Mushadani S, Freeman S, Karpas A, Petrik J, Mahmood N, and Hay AJ. Synthesis, Bioactivation and Anti-HIV Activity of the Bis(4-Acyloxybenzyl) and Mono(4-Acyloxybenzyl) Esters of the 5′-Monophosphate of AZT. J Chem Soc Perkin Trans 1 1993; 1240–1245

    Google Scholar 

  • Uchida K, and Kreis W. Studies on Drug Resistance. I. Distribution of L-beta-D-Arabinofuranosylcytosine, Cytidine and Deoxycytidine in Mice Bearing Ara-C-Sensitive and-Resistant P815 Neoplasms. Biochem Pharmacol 1969; 18:1115–1128

    Article  PubMed  CAS  Google Scholar 

  • Vepsalainen JJ. Bisphosphonate Prodrugs. Curr Med Chem 2002; 9:1201–1208

    PubMed  CAS  Google Scholar 

  • Viread® (Tenofovir Disoproxil Fumarate) Tablets. US Prescribing Information. Gilead Sciences, Inc. Foster City, CA June 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

He, GX., Krise, J.P., Oliyai, R. (2007). Prodrugs of Phosphonates, Phosphinates, and Phosphates. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_25

Download citation

Publish with us

Policies and ethics