Skip to main content
  • 864 Accesses

The transfer of acoustic information can be represented as consisting of three parts: the source, the medium, and the receiver. The transmitted information (signal) arrives at the receiver distorted by the medium and corrupted by noise. Thus, even when the signal is deterministic in nature, a complete description of the received signal must be a statistical one. That is to say, any processing carried out on the received energy must contain the best characterization of the distortion by the medium and corruption by the noise that is available, and this can only be done in terms of statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Kay, Fundamentals of Statistical Signal Processing; Vol II, Detection Theory, Prentice-Hall, New Jersey, 1998.

    Google Scholar 

  2. L. L. Scharf, Statistical Signal Processing; Detection, Estimation, and Time Series Analysis, Prentice-Hall, New Jersey, 1993.

    Google Scholar 

  3. G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1970.

    MATH  Google Scholar 

  4. E. J. Sullivan and David Middleton, “Estimation and detection issues in matched-field processing,” J. Oceanic Eng., 18, 3, July 1993.

    Google Scholar 

  5. A. B. Baggeroer, W. A. Kuperman and H. Schmidt, “Matched-field processing: Source localization in correlated noise as an optimum parameter estimation problem,” J. Acoust. Soc. Am., 83, 2, 571–587, 1988.

    Article  ADS  Google Scholar 

  6. J. V. Candy, Signal Processing:The Model-Based Approach, McGraw-Hill International Editions, 1986.

    Google Scholar 

  7. J. V. Candy, Model-Based Signal Processing, John Wiley & Sons, 2006.

    Google Scholar 

  8. E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bull. Am. Math. Soc., 26, 394–395 1920.

    Google Scholar 

  9. R. Penrose, “A Generalized Inverse for Matrices,” Proc. Cambridge Phil. Soc., 51, 406-413, 1955.

    Google Scholar 

  10. S. M. Kay, Fundamentals of Statistical Signal Processing; Estimation Theory, Addison-Wesley, 1991.

    Google Scholar 

  11. R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng., 82, 1960.

    Google Scholar 

  12. V. J. Aidala and S. M. Hammel, “Utilization of modified polar coordinates for bearingd-only tracking,” IEEE Trans. Autom. Contr., 28, 283–294, 1983.

    Google Scholar 

  13. A. Tolstoy, Matched Field Processing for Underwater Acoustics, World Scientific, 1991.

    Google Scholar 

  14. Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles, Techniques and Software, Norwood MA: Artech House, 1993.

    MATH  Google Scholar 

  15. R. J. Urick, Principles of Underwater Sound in the Sea, McGraw-Hill, New York, 1975.

    Google Scholar 

  16. B. Maranda, “Efficient digital beamforming in the frequency domain,” J. Acoust. Soc. Am., 86 (5), 1989.

    Google Scholar 

  17. W. S. Burdic, Underwater Acoustic Systems Analysis, Prentice Hall, New Jersey, 1991.

    Google Scholar 

  18. T. T. Taylor, “Design of line source antennas for narrow beamwidth and low side lobes,” IRE Trans., AP-3,1955.

    Google Scholar 

  19. J. Capon, R. J. Greenfield and R. J. Kolker, “Multidimensional maximum-likelihood processing of a large aperture seismic array,” Proc. IEEE, 55 (2), 1967.

    Google Scholar 

  20. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, John Wiley, New York, 1980.

    Google Scholar 

  21. H. L. van Trees, Optimum Array Processing, John Wiley, New York, 2002.

    Book  Google Scholar 

  22. P. W. Zehna, “Invariance of maximum likelihood estimators,” Ann. Math. Stat., 37 (3), 1, 1966.

    Article  MathSciNet  Google Scholar 

  23. E. J. Sullivan, “The Sidelobe Behavior of Conformal Arrays”, J. Acoust. Soc. of Am., 71 (2), February, 1982.

    Google Scholar 

  24. E. J. Sullivan, “Amplitude Shading of Irregular Acoustic Arrays”, J. Acoust. Soc. of Am., 63 (6), June, 1978.

    Google Scholar 

  25. J. G. Kelly, E. J. Sullivan and J. Salisbury, Comments on “Conformal Array Beam Patterns and Directivity Indices” [J. Acoustical Society of America, 63, 841–847 (1978)] J. Acoust. Soc. of Am., 65, (2), February, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sullivan, E.J. (2008). Statistical Signal Processing. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_94

Download citation

Publish with us

Policies and ethics