Skip to main content

Dynamic Nanodevices Based on Protein Molecular Motors

  • Chapter
BioMEMS and Biomedical Nanotechnology
  • 1663 Accesses

Abstract

Most of the present micro/nano biodevices are designed for a single use, as opposed to ‘classical’ non-biodevices (e.g., from the steam engine to the microchip). Once their function, be that simple molecular recognition like in microarrays or even biomolecular computation as in DNA computation arrays, is fulfilled and the information is passed further to signal and information processing systems, the product becomes functionally obsolete. There are indeed a few notable exceptions, e.g., biosensors and charge-controlled DNA hybridization arrays, but even these function for a limited period of time. This one-use character of micro/nano-biodevices is more an expression of the lack of robustness of their components (e.g., proteins, cells) rather than one of economic sense. Moreover, in advanced biodevices the biomolecular recognition will help to achieve their function, rather than being their function, whichwould allowthese devices to have a continuous instead of one-off mode of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1023, 1994.

    Article  Google Scholar 

  2. Y.V. Alexeeva, E.P. Ivanova, D.K. Pham, V. Buljan, and D.V. Nicolau. Controlled self-assembly of actin filaments for dynamic biodevices. Nanobiotechnology, 1:1551–1294, 2006.

    Google Scholar 

  3. T. Ando, N.Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda. A High-speed Atomic Force microscope for Studying Biological Macromolecules. Proc. Natl. Acad. Sci. U.S.A., 98:12468–12472, 2001.

    Article  Google Scholar 

  4. S.B. Asokan, L. Jawerth, R.L. Carroll, R.E. Cheney, S. Washburn, and R. Superfine. Two-dimensional manipulation and orientation of actin-myosin systems with dielectrophoresis. NanoLetters, 3:431–437, 2003.

    Google Scholar 

  5. G.D. Bachand and C.D. Montemagno. Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors. Biomed. Microdevices, 2:179–184, 2000.

    Article  Google Scholar 

  6. G.D. Bachand, R.K. Soong, H.P. Neves, A. Olkhovets, H.G. Craighead, and C.D. Montemagno. Precision attachment of individual F1-ATPase biomolecular motors on nanofabricated substrates. NanoLetters, 1:42–44, 2001.

    Google Scholar 

  7. A. Bernheim-Grosswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carleir, and C. Sykes. The dynamics of actin-based motility depend on surface parameters. Nature, 417:308–311, 2002.

    Article  Google Scholar 

  8. L. Bourdieu, M.O. Magnasco, D.A. Winklemann, and A. Libchaber. Actin filaments on myosin beds: The velocity distribution. Phy. Rev. E, 52:6573–6579, 1995.

    Article  Google Scholar 

  9. K.J. Böhm, R. Stracke, and E. Unger. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol. Intl., 24:335–341, 2000.

    Article  Google Scholar 

  10. T.B. Brown and W.O. Hancock. A polarized microtuble array for kinesin-powered-nanoscale assembly and force generation. Nanoletters, 2:1131–1135, 2002.

    Google Scholar 

  11. C. Brunner, K.-H. Ernst, H. Hess, and V. Vogel. Lifetime of biomolecules in polymer-based hybrid nanodevices. Nanotechnology, 15:540–548, 2004.

    Article  Google Scholar 

  12. R. Bunk, J. Klinth, J. Rosengren, I. Nicholls, S. Tagerud, P. Omling, A. Mansson, and L. Montelius. Towards a ‘nano-traffic’ system powered by molecular motors. Microelect. Eng., 67–68:899–904, 2003

    Article  Google Scholar 

  13. R. Bunk, J. Klinth, L. Montelius, I.A. Nicholls, P. Omling, S. Tågerud, and A. Månsson. Actomyosin motility on nanostructured surfaces. Biochem. Biophys. Res. Comm., 301:783–788, 2003b.

    Article  Google Scholar 

  14. L.A. Cameron, M.J. Footer, A. Van Oudenaarden, and J.A. Theriot. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl. Acad. Sci. U.S.A., 96:4908–4913, 1999.

    Article  Google Scholar 

  15. D.T. Chiu, E. Pezzoli, H. Wu, A.D. Stroock, and G.M. Whitesides. Using three-dimensional microfluidic networks for solving computationally hard problems. Proc. Natl. Acad. Sci. U.S.A., 2001, 98:2961–2966.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Chretien and R.H. Wade. New data on the microtubule surface lattice. Biol Cell, 71:161–174, 1991.

    Article  Google Scholar 

  17. J. Clemmens, H. Hess, H. Howard, and V. Vogel. Analysis of microtubule guidance in open microfabricated channels coated with the motor protein kinesin. Langmuir, 19:1738–1744, 2003.

    Article  Google Scholar 

  18. J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Bhringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, and V. Vogel. Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: chemical and topographic surface patterns. Langmuir, 19:10967–10974, 2003b.

    Article  Google Scholar 

  19. M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709–713, 1983.

    Article  Google Scholar 

  20. M.L. Connolly. Analytical molecular surface calculation. J. Appl. Crystall., 16:548–558, 1983.

    Article  Google Scholar 

  21. M.L. Connolly. Measurement of protein surface shape by solid angles. J. Mol. Graph., 4:3–6, 1986.

    Article  Google Scholar 

  22. R. Cooke. The sliding filament model: 1972–2004. J. Gen. Physiol. 123:643–656, 2004

    Article  Google Scholar 

  23. J.R. Dennis, J. Howard, and V. Vogel. Molecular shuttles: directing the motion of microtubules on nanoscale kinesin tracks. Nanotechnology, 10:232–236, 1999.

    Article  Google Scholar 

  24. S. Diez, C. Reuther, C. Dinu, R. Seidel, M. Mertig, W. Pompe, and J. Howard. Stretching and transporting DNA molecules using motor proteins. Nanoletters, 3:1251–1254, 2003.

    Google Scholar 

  25. P. Dimroth, H. Wang, M. Grabe, and G. Oster. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc. Natl. Acad. Sci. U.S.A., 96:4924–4929, 1999.

    Article  Google Scholar 

  26. M. Dogterom and B. Yurke. Measurement of the force-velocity relation for growing microtubules. Science, 278:856–860, 1997.

    Article  Google Scholar 

  27. D.E. Dupuis, W.H. Guilford, J. Wu, and D.M. Warshaw. Actin filament mechanics in the laser trap. J. Muscle Res. Cell. Motil., 18:17–30, 1997.

    Article  Google Scholar 

  28. J.T. Finner, R.M. Simmons, and J.A. Spudich. Characterization of single actin-mysoin interactions. Biophys. J., 68:291–297, 1995.

    Google Scholar 

  29. F. Fulga, S. Myhra, Jr. D.V. Nicolau, and D.V. Nicolau. Interrogation of the dynamics of magnetic microbeads on the meso-scale via electromagnetic detection. Smart Mat. Struct., 11:722–727, 2002.

    Article  Google Scholar 

  30. S.P. Gross, M.A. Welte, S.M. Block, and E.F. Wieschaus. Coordination of opposite-polarity microtubule motors. J. Cell Biol., 156:715–724, 2002.

    Article  Google Scholar 

  31. H. Hess and V. Vogel. Molecular shuttles based on motor proteins: active transport in synthetic environments. J. Biotechnol., 82:67–85, 2001.

    Google Scholar 

  32. H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.M. Bachand, B.C. Bunker, and V. Vogel. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. NanoLetters, 3:1651–1655, 2003.

    Google Scholar 

  33. H. Higuchi, E. Muto, Y. Inoue, and T. Yanagida. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl. Acad. Sci. U.S.A., 94:4395–4400, 1997.

    Article  Google Scholar 

  34. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q.P. Uyeda. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J., 81:1555–1561, 2001.

    Google Scholar 

  35. T.E. Holy, M. Dogterom, B. Yurke, and S. Leibler. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. U.S.A., 94:6228–6231, 1997.

    Article  Google Scholar 

  36. J. Howard, A.J. Hunt, and S. Baek. Assay of microtubule movement driven by single kinesin molecules. Meth. Cell Biol. 39:137–147, 1993.

    Article  Google Scholar 

  37. J. Howard. The movement of kinesin along microtubules. Annu. Rev. Physiol., 58:703–729, 1996

    Article  Google Scholar 

  38. J. Howard. Molecular motors: Structural adaptations to cellular functions. Nature, 389:561–567, 1997.

    Article  Google Scholar 

  39. J. Howard. Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc., 2001.

    Google Scholar 

  40. A.F. Huxley. Muscle structure and theories of contraction. Progr. Biophys. BioPhys. Chem., 7:255–318, 1957.

    Google Scholar 

  41. E. Insinna. Biocomputation and Nonlinear Dynamics in the Primitive Sensorimotor Mechanism of Euglena Gracilis. Biocomputing and emergent computation: Proceedings of BCEC97, Dan Lundh, Björn Olsson, Ajit Narayanan (Eds.). World Scientific, pp. 218–227, 1997.

    Google Scholar 

  42. A. Ishijima, Y. Harada, H. Kojima, T. Funatsu, H. Higuchi, and T. Yanagida. Single molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with microneedle: unitary steps and forces. Biophysi. J., 70:383–400, 1996.

    Google Scholar 

  43. L. Jia, S.G. Moorjani, T.M. Jackson, W.O. Hancock. Microscale transport and sorting by kinesin molecular motors. Biomed. Microdev., 6:67–74, 2004.

    Article  Google Scholar 

  44. K. Kawaguchi and S. Ishiwata. Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem. Biophys. Res. Commun., 272:895–899, 2000.

    Article  Google Scholar 

  45. M. Kawai, K. Kawaguchi, M. Saito, and S. Ishiwata. Temperature change does not affect force between single actin filaments and HMM from rabbit muscles. Biophys. J., 78:3112–3119, 2000.

    Article  Google Scholar 

  46. M. Kekic, G. Solana, D.V. Jr. Nicolau C.G. dos Remedios, and D.V. Nicolau. Nanosensing device based on actomyosin motility. (in preparation)

    Google Scholar 

  47. M.S.Z. Kellermeyer and G.H. Pollack. Rescue of in vitro motility halted at high ionic strength by reduction of ATP to submicromolar levels. Biochim. Biophys. Acta, 1277:107–114, 1996.

    Article  Google Scholar 

  48. K. Jr. Kinosita, R. Yasuda, H. Noji, S. Ishiwata, and M. Yoshida. F1-ATPase; a rotary motor made of a single molecule. Cell, 93:21–24, 1998.

    Article  Google Scholar 

  49. S.J. Kron and J.A. Spudich. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. U.S.A., 83:6272–6276, 1986.

    Article  Google Scholar 

  50. B. Liang, Y. Chen, C.-K. Wang, Z. Luo, M. Regnier, A.M. Gordon, and P.B. Chase. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: Role of cross-bridge number. Biophys. J., 85:1775–1786, 2003.

    Google Scholar 

  51. L. Limberis and R.J. Stewart. Toward kinesin-powered microdevices. Nanotechnology, 11:47–51, 2000.

    Article  Google Scholar 

  52. H.Q. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger, H.W. Hellinga, and C.D. Montemagno. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mat., 3:173–177, 2002.

    Article  Google Scholar 

  53. R.W. Lymn and E.W. Taylor. Mechanism of adenosine triphosphate by actomyosin. Biochemistry, 10:4617–4624, 1971.

    Article  Google Scholar 

  54. C. Mahanivong, J.P. Wright, M. Kekic, D.K. Pham, C. dos Remedios, and D.V. Nicolau. Manipulation of the Motility of Protein Molecular Motors on Microfabricated Substrates. Biomed. Microdev., 4:111–116, 2002.

    Article  Google Scholar 

  55. R. Martinez-Neira, M. Kekic, V. Buljan, D.V. Nicolau, and C.G. dos Remedios. A Novel Biosensor for Mercuric Ions Based on Motor Proteins. Biosens. Bioelect., 19:(in print), 2004.

    Google Scholar 

  56. Y. Miyamoto, E. Muto, T. Mashimo, A.H. Iwane, I. Yoshiya, and T. Yanagida. Direct inhibition of microtubule-based kinesin motility by local anesthetics. Biophys. J., 78:940–949, 2000.

    Google Scholar 

  57. C. Montemagno and G. Bachand. Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 10:225–231, 1999.

    Article  Google Scholar 

  58. P.B. Moore, H.E. Huxley, and D.J. DeRosier. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol., 50:279–295, 1970.

    Article  Google Scholar 

  59. M. Morimatsu, A. Nakamura, H. Sumiyoshi, N. Sakaba, H. Taniguchi, K. Kohama, and S. Higashi-Fujime. The molecular structure of fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun., 270:147–152, 2000.

    Article  Google Scholar 

  60. T. Nakagaki, H. Yamada, and A. Tóth. Maze-solving by an amoeboid organism. Nature, 407:470, 2000.

    Article  Google Scholar 

  61. H. Nakayama, T. Yamaga, and Y. Kunioka. Fine profile of actomyosin motility fluctuation revealed by using 40-nm probe beads. Biochem. Biophys. Res. Comm., 246:261–266, 1998.

    Article  Google Scholar 

  62. D.V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, and S. Yoshikawa. Movement of actin filaments on microlithographically-functionalized myosin tracks. Biophys. J., 77:1126–1134, 1999.

    Google Scholar 

  63. D.V. Nicolau and R. Cross. Protein profiled features patterned via bilayer microlithography and confocal microscopy. Biosen. Bioelect., 15:85–91, 2000.

    Article  Google Scholar 

  64. D.V. Jr. Nicolau and D.V. Nicolau. Computing with the actin-myosin molecular motor system. In Biomedical Applications of Micro-and Nanoengineering. SPIE Proc. 4937, 219–225, 2002.

    Google Scholar 

  65. D.V. Jr. Nicolau, F. Fulga, and D.V. Nicolau. Impact of protein adsorption on the geometry design of microfluidics devices. Biomed. Microdev., 5:227–233, 2003.

    Article  Google Scholar 

  66. D.V. Nicolau. Nanodevices based on linear protein molecular motors: Challenges and opportunities. In: J. Reif (Ed.), Foundations of Nanoscience: Self-Assembled Architectures and Devices, 2004.

    Google Scholar 

  67. H. Noji, R. Yasuda, M. Yoshida, and Jr, K. Kinosita. Direct observation of the rotation of F1ATPase. Nature, 386:299–302, 1997.

    Article  Google Scholar 

  68. K. Oiwa. Protein motors: Their mechanical properties and applications to nanometer-scale devices. Mat. Sci. Forum, 426–432:2339–2344, 2003.

    Google Scholar 

  69. F. Oosawa and S. Asakura. Thermodynamics of polymerization of protein. New York Academic Press, 1975.

    Google Scholar 

  70. E.M. Ostap, T. Yanagida, and D.D. Thomas. Orientational distribution of spin labeled actin oriented by flow. Biophys. J., 63:966–975, 1992.

    Google Scholar 

  71. T.D. Pollard. Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments. J. Cell Biol., 103:2747–2754, 1986

    Article  Google Scholar 

  72. T.D. Pollard, L. Blanchoin, and R.D. Mullins. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct., 29:545–576, 2000.

    Article  Google Scholar 

  73. I. Rayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan. Structure of the actin-myosin complex and its implications in muscle contraction. Science, 261:58–65, 1993.

    Article  Google Scholar 

  74. D. Riveline, A. Ott, F. Julicher, D.A. Winkelmann, O. Cardoso, J.J. Lacapere, S. Magnusdottir, J.L. Viovy, L. Gorre-Talini, and J. Prost. Acting on actin: the electric motility assay. Eur. Biophys. J., 27:403–408, 1998.

    Article  Google Scholar 

  75. R.S. Rock, M. Rief, A.D. Mehta, and J.A. Spudich. In vitro Assays of Processive Myosin Motors. Methods, 22:373–381, 2000.

    Article  Google Scholar 

  76. A. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud, and P. Bassereau. Aminimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl. Acad. Sci. USA, 99:5394–5399, 2002.

    Article  Google Scholar 

  77. M.V. Sataric and J.A. Tuszynski. Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Physical Rev. E., 67:011901–11, 2003.

    Article  Google Scholar 

  78. M. Sataric, J. Tuszynski, and R. Zakula. Kink-like excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E., 48:589–597, 1993.

    Article  Google Scholar 

  79. I. Sase, H. Miyata, S. Ishiwata, and K. Kinosita. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl. Acad. Sci. U.S.A., 94:5646–5650, 1997.

    Article  Google Scholar 

  80. M. Schliwa and G. Woehlke. Molecular motors. Nature, 422:759–765, 2003.

    Article  Google Scholar 

  81. J.J. Schmidt, X.Q. Jiang, and C.D. Montemagno. Force tolerances of hybrid nanodevices. Nanoletters, 11:1229–1233, 2002.

    Google Scholar 

  82. M.P. Sheetz and J.A. Spudich. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, 303:31–35, 1983.

    Article  Google Scholar 

  83. M.P. Sheetz, R. Chasan, and J.A. Spudich. ATP-dependent movement of myosin in vitro: Characterization of a quantitative assay. J. Cell Biol., 99:1867–1874, 1984.

    Article  Google Scholar 

  84. D. Shi, A.V. Somlyo, A.P. Somlyo, and Z. Shao. Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution. J. Microscopy, 201:377–382, 2001.

    Article  MathSciNet  Google Scholar 

  85. R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno. Powering a nanodevice with a biomolecular motor. Science, 290:1555–1558, 2000.

    Article  Google Scholar 

  86. R.K. Soong, H.P. Neves, J.J. Schmidt, G.D. Bachand, and C.D. Montemagno. Engineering Issues in the fabrication of a hybrid nano-propeller system powered by F1-ATPase, Biomed. Microdev., 3:71–73, 2001.

    Article  Google Scholar 

  87. J.A. Spudich, S.J. Kron, and M.P. Sheetz. Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 315:584–586, 1985.

    Article  Google Scholar 

  88. P. Stracke, K.J.Böhm, J. Burgold, H.J. Schacht, and E. Unger. Physical and technical parameters determining the functioning of a kinesin. Nanotechnology, 11:52–56, 2000.

    Article  Google Scholar 

  89. R. Stracke, K.J. Böhm, L. Wollweber, J.A. Tuszynski, and E. Unger. Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Comm., 293:602–609, 2002.

    Article  Google Scholar 

  90. H. Suda and A. Ishikawa. Accelerative sliding of myosin-coated glass beads under suspended condition from actin paracrystal. Biochem. Biophys. Res. Comm., 237:427–431, 1997.

    Article  Google Scholar 

  91. M. Sundberg, J.P. Rosengren, R. Bunk, J. Lindahl, I.A. Nicholls, S. Tågerud, P. Omling, L. Montelius, and A. Månsson. Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Analyt. Biochem., 323:127–138, 2003.

    Article  Google Scholar 

  92. H. Suzuki, K. Oiwa, A.Yamada, H. Sakakibara, H. Nakayama, and S. Mashiko. Linear arrangement of motor protein on a mechanically deposited fluoropolymer thin film. Jap. J. Appl. Phys., Part 1, 34:3937–3941, 1995.

    Article  Google Scholar 

  93. H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko. Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys. J., 72:1997–2001, 1997.

    Google Scholar 

  94. N. Suzuki, H. Miyata, S. Ishiwata, and K. Jr. Kinosita. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J., 70:401–408, 1996.

    Google Scholar 

  95. K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block. Direct observation of kinesin stepping by optical trapping inteferometry. Nature, 365:721–727, 1993.

    Article  Google Scholar 

  96. H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida. Orientation dependence of displacements by a single one headed myosin relative to the actin filament. Biophys. J., 75:1866–1894, 1998.

    Google Scholar 

  97. K.A. Taylor and D.W. Taylor. Formation of 2-D paracrystals of F-actin on phospholipid layers mixed with quaternary ammonium surfactants. J. Struct. Biol., 108:140–147, 1992.

    Article  Google Scholar 

  98. K.A. Taylor and D.W. Taylor. Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar alpha-actinin-Factin crosslinking. Biophys. J., 67:1976–1983, 1994.

    Google Scholar 

  99. K.A. Taylor and D.W. Taylor. Structural studies of cytoskeletal arrays formed on lipid monolayers. J. Struct. Biol., 128:75–81, 1999.

    Article  Google Scholar 

  100. J.A. Theriot. The polymerization motor. Traffic, 1:19–28, 2000.

    Article  Google Scholar 

  101. Y.Y. Toyoshima, S.J. Kron, and J.A. Spudich. The myosin step size: Measurement of the unit displacement per ATP hydrolyzed in an in vitro motility assay. Proc. Natl. Acad. Sci. U.S.A., 87:7130–7134, 1990.

    Article  Google Scholar 

  102. D.C. Turner, C. Chang, K. Fang, S.L. Brandow, and D.B. Murphy. Selective adhesion of functional microtubules to patterned silane surfaces. Biophys. J., 69:2782–2789, 1995.

    Google Scholar 

  103. D. Turner, C. Chang, K. Fang, P. Cuomo, and D. Murphy. Kinesin movement on glutaraldehyde-fixed microtubules. Anal. Biochem., 242:20–25, 1996.

    Article  Google Scholar 

  104. G. Uchida, Y. Mizukami, T. Nemoto, and Y. Tsuchiya. Sliding motion of magnetizable beads coated with Chara motor protein in a magnetic field. J. Phys. Soc. Japan, 67:345–350, 1998.

    Article  Google Scholar 

  105. T.Q.P. Uyeda, H.M. Warrick, S.J. Kron, and J.A. Spudich. Quantized velocities at low myosin densities in an in vitro motility assay. Nature, 352:307–311, 1991.

    Article  Google Scholar 

  106. R.D. Vale, T.S. Reese, and M.P. Sheetz. Identification of a novel force generating protein, kinesin, involved in microtubule based motility. Cell, 42:39–50, 1985.

    Article  Google Scholar 

  107. R.D. Vale and H. Hotani. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol., 107:2233–2241, 1988.

    Article  Google Scholar 

  108. R. Vale, D. Pierce, J. Spudich, and L.S.B. Goldstein. Assays for detecting modulators of cytoskeleton function. WO 99/11814, 1998.

    Google Scholar 

  109. R.D. Vale and R.A. Milligan. The way things move: Looking under the hood of molecular motor proteins. Science, 288:88:95, 2000.

    Article  Google Scholar 

  110. P. VanBuren, K. Begin, and D.M. Warshaw. Fluorescent phalloidin enables visualization of actin without effects on myosin’s actin filament sliding velocity and hydrolytic properties in vitro. J. Mol. Cell. Cardiol., 30:2777–2783, 1998.

    Article  Google Scholar 

  111. R.A. Walker, E.T. O’Brian, N.K. Pryer, M.F. Soboeiro, W.A. Voter, H.P. Erickson, and E.D. Salmon. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol., 107:1437–1448, 1988.

    Article  Google Scholar 

  112. F. Wang, L. Chen, O. Arcucci, E.V. Harvey, B. Bowers, Y. Xu, J.A. Hammer, 3rd, and J.R. Sellers. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem., 275:4329–4335, 2000.

    Article  Google Scholar 

  113. G.S. Watson, C. Cahill, J. Blach, S. Myhra, Y. Alekseeva, E.P. Ivanova, and D.V. Nicolau. Actin Nanotracks for Hybrid Nanodevices Based on Linear Protein Molecular Motors. In: J.T. Borenstein, P. Grodzinski, L.P. Lee, J. Liu, Z. Wang, D. McIlroy, L. Merhari, J.B. Pendry, D.P. Taylor (eds.), Nanoengineered Assemblies and Advanced Micro/Nanosystems. Proceedings of MRS Spring Meeting, San Francisco, April 2004, (in print).

    Google Scholar 

  114. D.A. Winkelmann, L. Bourdieu, A. Ott, F. Kinose, and A. Libchaber. The flexibility of attachment of myosin on surfaces influences F-actin motion, Biophys. J., 68:2444–2453, 1995.

    Google Scholar 

  115. J.P. Wright, D.K. Pham, C. Mahanivong, M. Kekic, C.G. dos Remedios, and D.V. Nicolau. Micropatterning of Myosin on O-Acryloyl Acetophenone Oxime (AAPO), Layered with Bovine Serum Albumin (BSA). Biomed. Microdev., 4:205–211, 2002.

    Article  Google Scholar 

  116. H. Yamasaki and H. Nakayama. Fluctuation analysis of myosin-coated bead movement along actin bundles of nitella. Biochem. Biophys. Res. Comm., 221:831–835, 1996.

    Article  Google Scholar 

  117. T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature, 307:58–60, 1984.

    Article  Google Scholar 

  118. M. Yoshida, E. Muneyuki, and T. Hisabori. ATP synthase-a marvelous rotary engine of the cell. Nat. Rev. Mol. Cell. Biol., 2:669–677, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Nicolau, D.V. (2006). Dynamic Nanodevices Based on Protein Molecular Motors. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics