Skip to main content

Antibiotics and the Intestinal Microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 398))

Abstract

The intestinal microbiota is a diverse ecosystem containing thousands of microbial species, whose metabolic activity affects many aspects of human physiology. Large-scale surveys have demonstrated that an individual’s microbiota composition is shaped by factors such as diet and the use of medications, including antibiotics. Loss of overall diversity and in some cases loss of single groups of bacteria as a consequence of antibiotic treatment in humans has been associated with enhanced susceptibility toward gastrointestinal infections and with enhanced weight gain and obesity in young children. Moreover, the extensive use of antibiotics has led to an increased abundance of antibiotic resistance genes (ARGs) within commensal bacteria that can be transferred to invading pathogens, which complicates the treatment of bacterial infections. In this review, we provide insight into the complex interplay between the microbiota and antibiotics focussing on (i) the effect of antibiotics on the composition of the microbiota, (ii) the impact of antibiotics on gastrointestinal infections, and (iii) finally the role of the microbiota as reservoir for ARGs. We also discuss how targeted manipulation of the microbiota may be used as an innovative therapeutic approach to reduce the incidence of bacterial infections as well as resulting complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM, Seyfarth AM, Emborg HD et al (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059

    Google Scholar 

  • Accountability NUSG (2011) Antibiotic resistanste: agencies have made limited progress addressing antibiotic use in animals

    Google Scholar 

  • Aloisio I, Mazzola G, Corvaglia LT et al (2014) Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Appl Microbiol Biotechnol 98:6051–6060

    Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Google Scholar 

  • Archbald-Pannone LR, Boone JH, Carman RJ et al (2014) Clostridium difficile ribotype 027 is most prevalent among inpatients admitted from long-term care facilities. J Hosp Infect 88:218–221

    Google Scholar 

  • Arutyunov D, Frost LS (2013) F conjugation: back to the beginning. Plasmid 70:18–32

    Google Scholar 

  • Bertrand S, Weill F-X, Cloeckaert A et al (2006) Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)-producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J Clin Microbiol 44:2897–2903

    Google Scholar 

  • Best EL, Freeman J, Wilcox MH (2012) Models for the study of Clostridium difficile infection. Gut Microbes 3:145–167

    Google Scholar 

  • Bohnhoff M, Miller CP (1962) Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infect Dis 111:117–127

    Google Scholar 

  • Brandl K, Plitas G, Mihu CN et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807

    Google Scholar 

  • Brandt LJ, Aroniadis OC, Mellow M et al (2012) Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107:1079–1087

    Google Scholar 

  • Broaders E, Gahan CGM, Marchesi JR (2013) Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 4:271–280

    Google Scholar 

  • Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801

    Google Scholar 

  • Buffie CG, Jarchum I, Equinda M et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80:62–73

    Google Scholar 

  • Buffie CG, Bucci V, Stein RR et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Google Scholar 

  • Bushman FD, Minot S, Sinha R et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625

    Google Scholar 

  • Caballero S, Carter R, Ke X et al (2015) Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog 11:e1005132

    Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Google Scholar 

  • Chandler MS (1992) The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89:1626–1630

    Google Scholar 

  • Chen X, Katchar K, Goldsmith JD et al (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135:1984–1992

    Google Scholar 

  • Choi K-H, Kim K-J (2009) Applications of transposon-based gene delivery system in bacteria. J Microbiol Biotechnol 19:217–228

    Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Google Scholar 

  • Clemente JC, Pehrsson EC, Blaser MJ et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183–e1500183

    Google Scholar 

  • Cohen SH, Gerding DN, Johnson S et al (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455

    Google Scholar 

  • Conlan S, Thomas PJ, Deming C, et al (2014) Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6:254ra126–254ra126. doi:10.1126/scitranslmed.3009845

    Google Scholar 

  • Cox LM, Blaser MJ (2015) Antibiotics in early life and obesity. Nat Rev Endocrinol 11:182–190

    Google Scholar 

  • Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489

    Google Scholar 

  • D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Google Scholar 

  • de Boer P, Wagenaar JA, Achterberg RP et al (2002) Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol 44:351–359

    Google Scholar 

  • De La Cochetière MF, Durand T, Lepage P et al (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592

    Google Scholar 

  • Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108 Suppl 1:4554–4561

    Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Google Scholar 

  • Dobrindt U, Chowdary MG, Krumbholz G, Hacker J (2010) Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 199:145–154

    Google Scholar 

  • Doron S, Hibberd PL, Goldin B et al (2015) Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant Enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59:4593–4599

    Google Scholar 

  • Endtz HP, Ruijs GJ, van Klingeren B et al (1991) Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27:199–208

    Google Scholar 

  • Ferreira RBR, Gill N, Willing BP et al (2011) The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE 6:e20338

    Google Scholar 

  • Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293

    Google Scholar 

  • Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading, Engl) 155:1749–1757

    Google Scholar 

  • Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. World Health Organization

    Google Scholar 

  • Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Google Scholar 

  • Forslund K, Sunagawa S, Kultima JR et al (2013) Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23:1163–1169

    Google Scholar 

  • Fouhy F, Guinane CM, Hussey S et al (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820

    Google Scholar 

  • Frye JG, Lindsey RL, Meinersmann RJ et al (2011) Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis 8:663–679

    Google Scholar 

  • Garnier F, Taourit S, Glaser P et al (2000) Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology (Reading, Engl) 146 (Pt 6):1481–1489

    Google Scholar 

  • Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130

    Google Scholar 

  • Ghosh TS, Gupta SS, Nair GB, Mande SS (2013) In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS ONE 8:e83823

    Google Scholar 

  • Gilmore MS, Clewell DB, Ike Y et al (2014) Enterococcus diversity, origins in nature, and gut colonization. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  • Gorbach SL (2001) Antimicrobial use in animal feed—time to stop. N Engl J Med 345:1202–1203

    Google Scholar 

  • Gosalbes MJ, Valles Y, Jimenez-Hernandez N et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis 7:35–44

    Google Scholar 

  • Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009–1254009

    Google Scholar 

  • Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002

    Google Scholar 

  • Gueimonde M, Salminen S, Isolauri E (2006) Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 48:21–25

    Google Scholar 

  • Hachler H, Berger-bachi B, Kayser FH (1987) Genetic characterization of a Clostridium difficile erythromycin- clindamycin resistance determinant that is transferable to Staphylococcus aureus. Microbiology 31:1039–1045

    Google Scholar 

  • Hall IC, O’Toole E (1935) Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child 49:390–402

    Google Scholar 

  • Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20:262–267

    Google Scholar 

  • Hasegawa M, Kamada N, Jiao Y et al (2012) Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J Immunol 189:3085–3091

    Google Scholar 

  • Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82:1516–1524

    Google Scholar 

  • Hentges DJ, Freter R (1962) In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests. J Infect Dis 110:30–37

    Google Scholar 

  • Hidron AI, Edwards JR, Patel J et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011

    Google Scholar 

  • Howells CH, Joynson DH (1975) Possible role of animal feeding-stuffs in spread of antibiotic-resistant intestinal coliforms. 1:156–157

    Google Scholar 

  • Hu Y, Yang X, Qin J et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151

    Google Scholar 

  • Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167–176

    Google Scholar 

  • Huddleston JR, Brokaw JM, Zak JC, Jeter RM (2013) Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. Syst Appl Microbiol 36:224–234

    Google Scholar 

  • Hurd EA, Holmén JM, Hansson GC, Domino SE (2005) Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. Glycobiology 15:1002–1007

    Google Scholar 

  • Husain F, Veeranagouda Y, Boente R et al (2014) The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mobile Genetic Elements 4:e29801

    Google Scholar 

  • Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Google Scholar 

  • Jarchum I, Liu M, Lipuma L, Pamer EG (2011) Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 79:1498–1503

    Google Scholar 

  • Jarchum I, Liu M, Shi C et al (2012) Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect Immun 80:2989–2996

    Google Scholar 

  • Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182

    Google Scholar 

  • Jeon B, Muraoka W, Sahin O, Zhang Q (2008) Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in Campylobacter jejuni. Antimicrob Agents Chemother 52:2699–2708

    Google Scholar 

  • Jernberg C, Löfmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    Google Scholar 

  • Johansson MEV, Phillipson M, Petersson J, et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069

    Google Scholar 

  • Johansson MEV, Larsson JMH, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108 Suppl 1:4659–4665

    Google Scholar 

  • Johansson MEV, Jakobsson HE, Holmén-Larsson J et al (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18:582–592

    Google Scholar 

  • Johnning A, Kristiansson E, Angelin M et al (2015) Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India. BMC Microbiol 15:235

    Google Scholar 

  • Just I, Richter HP, Prepens U et al (1994) Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes. J Cell Sci 107 (Pt 6):1653–1659

    Google Scholar 

  • Kelly CR, de Leon L, Jasutkar N (2012) Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol 46:145–149

    Google Scholar 

  • Khanna S, Gupta A, Baddour LM, Pardi DS (2015) Epidemiology, outcomes, and predictors of mortality in hospitalized adults with Clostridium difficile infection. Intern Emerg Med 1–9

    Google Scholar 

  • Kinnebrew MA, Ubeda C, Zenewicz LA et al (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201:534–543

    Google Scholar 

  • Korpela K, Salonen A, Virta LJ et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:10410.0

    Google Scholar 

  • Landy J, Al-Hassi HO, McLaughlin SD et al (2011) Review article: faecal transplantation therapy for gastrointestinal disease. Aliment Pharmacol Ther 34:409–415

    Google Scholar 

  • Larentis DZ, Rosa RG, Santos Dos RP, Goldani LZ (2015) Outcomes and risk factors associated with Clostridium difficile diarrhea in hospitalized adult patients. Gastroenterol Res Pract 2015:346341–6

    Google Scholar 

  • Lau HY, Huffnagle GB, Moore TA (2008) Host and microbiota factors that control Klebsiella pneumoniae mucosal colonization in mice. Microbes Infect 10:1283–1290

    Google Scholar 

  • Lautenbach E, Marsicano R, Tolomeo P et al (2009) Epidemiology of antimicrobial resistance among gram-negative organisms recovered from patients in a multistate network of long-term care facilities. Infect Control Hosp Epidemiol 30:790–793

    Google Scholar 

  • Lawley TD, Clare S, Walker AW et al (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995

    Google Scholar 

  • Le Lay C, Dridi L, Bergeron MG et al (2016) Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J Med Microbiol 65:169–175

    Google Scholar 

  • Lessa FC, Mu Y, Bamberg WM et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834

    Google Scholar 

  • Levy SB, FitzGerald GB, Macone AB (1976) Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 260:40–42

    Google Scholar 

  • Lewis BB, Buffie CG, Carter RA et al (2015) Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J Infect Dis jiv256

    Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725

    Google Scholar 

  • Li H, Limenitakis JP, Fuhrer T et al (2015) The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 6:8292

    Google Scholar 

  • Loo VG, Poirier L, Miller MA et al (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449

    Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Google Scholar 

  • Machado AMD, Sommer MOA (2014) Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. PLoS ONE 9:e100739–5

    Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295

    Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50

    Google Scholar 

  • Michod RE, Wojciechowski MF, Hoelzer MA (1988) DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118:31–39

    Google Scholar 

  • Milazzo I, Speciale A, Musumeci R et al (2006) Identification and antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. New Microbiol 29:281–291. doi:10.1016/S0168-1605(02)00162-9

    Google Scholar 

  • Mullany P, Pallen M, Wilks M et al (1996) A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174:145–150

    Google Scholar 

  • Mullany P, Allan E, Roberts AP (2015) Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 166:361–367

    Google Scholar 

  • Neuhauser MM, Weinstein RA, Rzdman R (2003) Antibiotic resistance among gram-negative bacilli in us intensive care units: implications for fluoroquinolone use. JAMA 289:885–888

    Google Scholar 

  • Niess JH, Brand S, Gu X et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Google Scholar 

  • Nigro SJ, Holt KE, Pickard D, Hall RM (2015) Carbapenem and amikacin resistance on a large conjugative Acinetobacter baumannii plasmid. J Antimicrob Chemother 70:1259–1261

    Google Scholar 

  • Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing enterobacteriaceae. Emerging Infect Dis 17:1791–1798

    Google Scholar 

  • O’Connor JR, Johnson S, Gerding DN (2009) Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136:1913–1924

    Google Scholar 

  • Oethinger M, Kern WV, Jellen-Ritter AS et al (2000) Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10–13

    Google Scholar 

  • Orenstein R, Dubberke E, Hardi R et al (2016) Safety and durability of RBX2660 (Microbiota Suspension) for recurrent Clostridium difficile infection: results of the PUNCH CD study. Clin Infect Dis 62:596–602

    Google Scholar 

  • Paltansing S, Vlot JA, Kraakman MEM et al (2013) Extended-spectrum β-lactamase-producing enterobacteriaceae among travelers from the Netherlands. Emerging Infect Dis 19:1206–1213

    Google Scholar 

  • Pantosti A, Del Grosso M, Tagliabue S et al (1999) Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet 354:741–742

    Google Scholar 

  • Paramsothy S, Borody TJ, Lin E et al (2015) Donor recruitment for fecal microbiota transplantation. Inflamm Bowel Dis 21:1600–1606

    Google Scholar 

  • Petersson J, Schreiber O, Hansson GC et al (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 300:G327–33

    Google Scholar 

  • Petrof EO, Gloor GB, Vanner SJ et al (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “RePOOPulating” the gut. Microbiome 1:3

    Google Scholar 

  • Pham TAN, Clare S, Goulding D et al (2014) Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16:504–516

    Google Scholar 

  • Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641

    Google Scholar 

  • Pokharel BM, Koirala J, Dahal RK et al (2006) Multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis 10:434–438

    Google Scholar 

  • Ramirez MS, Traglia GM, Lin DL et al (2014) Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr 2:1–15

    Google Scholar 

  • Raymond F, Ouameur AA, Déraspe M et al (2016) The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 10:707–720

    Google Scholar 

  • Redelings MD, Sorvillo F, Mascola L (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerging Infect Dis 13:1417–1419

    Google Scholar 

  • Reeves AE, Theriot CM, Bergin IL et al (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2:145–158

    Google Scholar 

  • Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB (2012) Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80:3786–3794

    Google Scholar 

  • Ruppe E, Armand-Lefevre L, Estellat C et al (2014) Acquisition of carbapenemase-producing enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013. Eurosurveillance 19:20768–4

    Google Scholar 

  • Rutten NBMM, Rijkers GT, Meijssen CB et al (2015) Intestinal microbiota composition after antibiotic treatment in early life: the INCA study. BMC Pediatr 15:204

    Google Scholar 

  • Saari A, Virta LJ, Sankilampi U et al (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135:617–626

    Google Scholar 

  • Saleeby J, Ducea M, Clemens-Knott D (2003) Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22:n/a–n/a

    Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Google Scholar 

  • Schmieger H, Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett 170:251–256

    Google Scholar 

  • Searle LEJ, Best A, Nunez A et al (2009) A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar typhimurium infection in mice. J Med Microbiol 58:37–48

    Google Scholar 

  • Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    Google Scholar 

  • Sekirov I, Tam NM, Jogova M et al (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76:4726–4736

    Google Scholar 

  • Sghir A, Gramet G, Suau A et al (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266

    Google Scholar 

  • Sievert DM, Ricks P, Edwards JR et al (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14

    Google Scholar 

  • Singh R, Schroeder CM, Meng J et al (2005) Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. J Antimicrob Chemother 56:216–219

    Google Scholar 

  • Sommer MOA, Church GM, Dantas G et al (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131

    Google Scholar 

  • Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505–2512

    Google Scholar 

  • Stecher B, Denzler R, Maier L et al (2012) Gut inflammation can boost horizontal gene transfer between pathogenic and commensal enterobacteriaceae. Proc Natl Acad Sci USA 109:1269–1274

    Google Scholar 

  • Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000

    Google Scholar 

  • Tanaka S, Kobayashi T, Songjinda P, et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87

    Google Scholar 

  • Taylor DE, Chau AS (1997) Cloning and nucleotide sequence of the gyrA gene from Campylobacter fetus subsp. fetus ATCC 27374 and characterization of ciprofloxacin-resistant laboratory and clinical isolates. Antimicrob Agents Chemother 41:665–671

    Google Scholar 

  • Threlfall EJ (2000) Epidemic Salmonella Typhimurium DT 104—a truly international multiresistant clone. J Antimicrob Chemother 46:7–10

    Google Scholar 

  • Tolmasky ME, Chamorro RM, Crosa JH, Marini PM (1988) Transposon-Mediated Amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 32:1416–1420

    Google Scholar 

  • Tvede M, Rask-Madsen J (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1:1156–1160

    Google Scholar 

  • Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341

    Google Scholar 

  • Ubeda C, Bucci V, Caballero S et al (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973

    Google Scholar 

  • Uttley AH, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    Google Scholar 

  • Vaishnava S, Behrendt CL, Ismail AS et al (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863

    Google Scholar 

  • Wani KA, Thakur MA, Fayaz AS et al (2009) Extended spectrum B-Lactamase mediated resistance in Escherichia coli in a tertiary care hospital. Int J Health Sci 3:155–163

    Google Scholar 

  • Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    Google Scholar 

  • Wenzel RP (2002) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers (Book review), second edn. By Stuart B. Levy. 353 pp., illustrated. Cambridge, Mass., Perseus Publishing, 2002. $17.50. 0-7382-0440-4. N Engl J Med 347:1213–1213

    Google Scholar 

  • Willing BP, Vacharaksa A, Croxen M et al (2011) Altering host resistance to infections through microbial transplantation. PLoS ONE 6:e26988

    Google Scholar 

  • Wilson KH (1983) Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18:1017–1019

    Google Scholar 

  • Wlodarska M, Willing B, Keeney KM et al (2011) Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79:1536–1545

    Google Scholar 

  • Woloj M, Tolmasky ME, Roberts MC, Crosa JH (1986) Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis. Antimicrob Agents Chemother 29:315–319

    Google Scholar 

  • Zaura E, Brandt BW, Teixeira de Mattos MJ et al (2015) Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 6:e01693–15

    Google Scholar 

  • Zhang L, Kinkelaar D, Huang Y et al (2011) Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77:7134–7141

    Google Scholar 

  • Zoch B, Karch A, Dreesman J et al (2015) Feasibility of a birth cohort study dedicated to assessing acute infections using symptom diaries and parental collection of biomaterials. BMC Infect Dis 15:436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Strowig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Thiemann, S., Smit, N., Strowig, T. (2016). Antibiotics and the Intestinal Microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_504

Download citation

Publish with us

Policies and ethics