Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 365))

Abstract

Japanese encephalitis (JE) is one of the most well studied arthropod zoonotic diseases with human and animal research and their integration spanning 6–7 decades. JE research and policy in some Asian countries has epitomized the ‘One Health’ strategy of attainment of optimal health for people, animals, and the environment. However, despite significant mitigation of JE in some Asian countries primarily due to vaccination programs and infrastructural development, JE continues to be a major disease burden in the Asian region. Arthropod-borne zoonotic infections such as JE present some of the greatest challenges to animal and human health globally. Their emergence involves a complex interplay of vectors, hosts, environment, climate, and anthropogenic factors. Therefore, the integrated management of infectious agents that affect both humans and animals is perhaps the most highly coveted strategy that public health policy makers aspire to attain in the twenty-first century. This is in response to the seemingly growing challenges of controling the burden of emerging infectious diseases such as shrinking financial budgets and resources, increasing demand for public health deliverables, demographic shifts and mobility, global trade economies, and climate and landscape changes. Thus, while JE research and policy is an excellent example of the One Health strategy in action, further work is required to address the obstinate burden of transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anyamba A, Chretien JP et al (2006) Developing global climate anomalies suggest potential disease risks for 2006–2007. Int J Health Geogr 5:60

    PubMed  Google Scholar 

  • Arai S, Matsunaga Y et al (2008) Japanese encephalitis: surveillance and elimination effort in Japan from 1982 to 2004. Jpn J Infect Dis 61(5):333–338

    PubMed  Google Scholar 

  • Arunachalam N, Samuel PP et al (2004) Japanese encephalitis in Kerala, south India: can Mansonia (Diptera: Culicidae) play a supplemental role in transmission? J Med Entomol 41(3):456–461

    PubMed  CAS  Google Scholar 

  • Asahina S (1970) Transoceanic flight of mosquitoes on the Northwest Pacific. Jpn J Med Sci Biol 23(4):255–258

    PubMed  CAS  Google Scholar 

  • Asnis DS, Conetta R et al (2000) The West Nile Virus outbreak of 1999 in New York: the flushing hospital experience. Clin Infect Dis 30(3):413–418

    PubMed  CAS  Google Scholar 

  • Axtell RC (1979) Principles of integrated pest management (IPM) in relation to mosquito control. Mosq News 39:709–718

    Google Scholar 

  • Bangs MJ, Larasati RP et al (2006) Climatic factors associated with epidemic dengue in Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian J Trop Med Pub Health 37(6):1103–1116

    Google Scholar 

  • Barrett ADT (2001) Japanese encephalitis. The encyclopedia of arthropod-transmitted infections. In: Michael W (ed) Service, CABI Publishing, New York, pp 239–246

    Google Scholar 

  • Barzaga NG (1989) A review of Japanese encephalitis cases in the Philippines (1972–1985). Southeast Asian J Trop Med Pub Health 20(4):587–592

    CAS  Google Scholar 

  • Beier JC, Keating J et al (2008) Integrated vector management for malaria control. Malar J 7(Suppl 1):S4

    PubMed  Google Scholar 

  • Bhattacharya S, Chakraborty SK et al (1986) Density of Culex vishnui and appearance of JE antibody in sentinel chicks and wild birds in relation to Japanese encephalitis cases. Trop Geogr Med 38(1):46–50

    PubMed  CAS  Google Scholar 

  • Bhattacharyya DR, Dutta P et al (1995) Biting cycles of some potential vector mosquitos of Japanese encephalitis of Assam, India. Southeast Asian J Trop Med Pub Health 26(1):177–179

    CAS  Google Scholar 

  • Bi P, Tong S et al (2003) Climate variability and transmission of Japanese encephalitis in eastern China. Vector Borne Zoonotic Dis 3(3):111–115

    PubMed  Google Scholar 

  • Bi P, Zhang Y et al (2007) Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J Infect 55(6):551–556

    PubMed  Google Scholar 

  • Borah J, Dutta P et al (2012) Epidemiological concordance of Japanese encephalitis virus infection among mosquito vectors, amplifying hosts and humans in India. Epidemiol Infect 1–7

    Google Scholar 

  • Buescher EL, Scherer WF (1959) Ecologic studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions. Am J Trop Med Hyg 8:719–722

    PubMed  CAS  Google Scholar 

  • Buescher EL, Scherer WF et al (1959a) Ecologic studies of Japanese encephalitis virus in Japan. IV. Avian infection. Am J Trop Med Hyg 8:678–688

    PubMed  CAS  Google Scholar 

  • Buescher EL, Scherer WF et al (1959b) Ecologic studies of Japanese encephalitis virus in Japan. II. Mosquito infection. Am J Trop Med Hyg 8:651–664

    PubMed  CAS  Google Scholar 

  • Burke DS, Leake CJ (1988) Japanese encephalitis. CRC Press, Boca Raton

    Google Scholar 

  • Burke DS, Ussery MA et al (1985) Isolation of Japanese encephalitis virus strains from sentinel pigs in northern Thailand, 1982. Trans R Soc Trop Med Hyg 79(3):420–421

    PubMed  CAS  Google Scholar 

  • Campbell GL, Hills SL et al (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766–774, 774A–774E

    Google Scholar 

  • Carey DE, Reuben R et al (1969) Japanese encephalitis studies in Vellore, South India. V. Experimental infection and transmission. Indian J Med Res 57(2):282–289

    Google Scholar 

  • Cazelles B, Chavez M et al (2005) Nonstationary influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS Med 2(4):e106

    PubMed  Google Scholar 

  • Ceesay SJ, Casals-Pascual C et al (2010) Continued decline of malaria in the Gambia with implications for elimination. PLoS One 5(8):e12242

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (1993) Inactivated Japanese encephalitis virus vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 42(RR-1), 1–15

    Google Scholar 

  • Chan YC, Loh TF (1966) Isolation of Japanese encephalitis virus from the blood of a child in Singapore. Am J Trop Med Hyg 15(4):567–572

    PubMed  CAS  Google Scholar 

  • Chapman HF, Hughes JM et al (2003) Population structure and dispersal of the freshwater mosquitoes Culex annulirostris and Culex palpalis (Diptera: Culicidae) in Papua New Guinea and northern Australia. J Med Entomol 40(2):165–169

    PubMed  CAS  Google Scholar 

  • Chen WR, Tesh RB et al (1990) Genetic variation of Japanese encephalitis virus in nature. J Gen Virol 71(Pt 12):2915–2922

    PubMed  CAS  Google Scholar 

  • Cross JH, Lien JC et al (1971) Japanese encephalitis virus surveillance in Taiwan. II. Isolations from mosquitoes and bats in Taipei area 1969–1970. Taiwan Yi Xue Hui Za Zhi 70(12):681–686

    PubMed  CAS  Google Scholar 

  • DeFoliart GR, Grimstad PR et al (1987) Advances in mosquito-borne arbovirus/vector research. Annu Rev Entomol 32:479–505

    PubMed  CAS  Google Scholar 

  • Detels R, Cross JH et al (1976) Japanese encephalitis virus in Northern Taiwan, 1969–1973. Am J Trop Med Hyg 25(3):477–485

    PubMed  CAS  Google Scholar 

  • Dickerson RB, Newton JR et al (1952) Diagnosis and immediate prognosis of Japanese B encephalitis; observations based on more than 200 patients with detailed analysis of 65 serologically confirmed cases. Am J Med 12(3):277–288

    PubMed  CAS  Google Scholar 

  • Ding D, Kilgore PE et al (2003) Cost-effectiveness of routine immunization to control Japanese encephalitis in Shanghai, China. Bull World Health Organ 81(5):334–342

    PubMed  Google Scholar 

  • Doi R, Oya A et al (1983) Studies on Japanese encephalitis virus infection of reptiles. II. Role of lizards on hibernation of Japanese encephalitis virus. Jpn J Exp Med 53(2):125–134

    PubMed  CAS  Google Scholar 

  • Doi R, Oya A et al (1968) A preliminary report on infection of the lizard, Takydromus tachydromoides, with Japanese encephalitis virus. Jpn J Med Sci Biol 21(3):205–207

    PubMed  CAS  Google Scholar 

  • Doi R, Shirasaki A et al (1967) The mode of development of Japanese encephalitis virus in the mosquito Culex tritaeniorhynchus summorosus as observed by the fluorescent antibody technique. Jpn J Exp Med 37(3):227–238

    PubMed  CAS  Google Scholar 

  • Dutta P, Khan SA et al (2011) The effect of insecticide-treated mosquito nets (ITMNs) on Japanese encephalitis virus seroconversion in pigs and humans. Am J Trop Med Hyg 84(3):466–472

    PubMed  Google Scholar 

  • Ellis PM, Daniels PW et al (2000) Japanese encephalitis. Vet Clin North Am Equine Pract 16(3):565–578, x–xi

    Google Scholar 

  • Endy TP, Nisalak A (2002) Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267:11–48

    PubMed  CAS  Google Scholar 

  • Erlanger TE, Weiss S et al (2009) Past, present, and future of Japanese encephalitis. Emerg Infect Dis 15(1):1–7

    PubMed  Google Scholar 

  • Frances SP, Sithiprasasna R et al (2011) Laboratory evaluation of the response of Aedes aegypti and Aedes albopictus uninfected and infected with dengue virus to deet. J Med Entomol 48(2):334–336

    PubMed  Google Scholar 

  • Garrett-Jones C (1964) Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204:1173–1175

    PubMed  CAS  Google Scholar 

  • Garrett-Jones C, Grab B (1964) The assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the proportion of parous females. Bull World Health Organ 31:71–86

    PubMed  CAS  Google Scholar 

  • Geevarghese G, Shaikh BH et al (1991) Monitoring Japanese encephalitis virus activity using domestic sentinel pigs in Mandya district, Karnataka state (India). Indian J Med Res 93:140–142

    PubMed  CAS  Google Scholar 

  • Gingrich JB, Nisalak A et al (1987) A longitudinal study of Japanese encephalitis in suburban Bangkok, Thailand. Southeast Asian J Trop Med Pub Health 18(4):558–566

    CAS  Google Scholar 

  • Gingrich JB, Nisalak A et al (1992) Japanese encephalitis virus in Bangkok: factors influencing vector infections in three suburban communities. J Med Entomol 29(3):436–444

    PubMed  CAS  Google Scholar 

  • Gore T, Gore P et al (2008) Horse owner’s veterinary handbook. Wiley Publishing, Inc, Hoboken

    Google Scholar 

  • Goto H (1976) Efficacy of Japanese encephalitis vaccine in horses. Equine Vet J 8(3):126–127

    PubMed  CAS  Google Scholar 

  • Gould DJ, Byrne RJ et al (1964) Experimental Infection of Horses with Japanese Encephalitis Virus by Mosquito Bite. Am J Trop Med Hyg 13:742–746

    Google Scholar 

  • Gould DJ, Edelman R et al (1974) Study of Japanese encephalitis virus in Chiangmai Valley, Thailand. IV. Vector studies. Am J Epidemiol 100(1):49–56

    PubMed  CAS  Google Scholar 

  • Gresser I, Hardy JL et al (1958a) Factors influencing transmission of Japanese B encephalitis virus by a colonized strain of Culex tritaeniorhynchus Giles, from infected pigs and chicks to susceptible pigs and birds. Am J Trop Med Hyg 7(4):365–373

    PubMed  CAS  Google Scholar 

  • Gresser I, Hardy JL et al (1958b) The growth curve of Japanese encephalitis virus in the vector mosquito of Japan, Culex tritaeniorhynchus. Jpn J Exp Med 28:243–248

    PubMed  CAS  Google Scholar 

  • Gulati BR, Singha H et al (2011) Serosurveillance for Japanese encephalitis virus infection among equines in India. J Vet Sci 12(4):341–345

    PubMed  Google Scholar 

  • Habu A, Murakami Y et al (1977) Disorder of spermatogenesis and viral discharge into semen in boars infected with Japanese encephalitis virus (author’s transl). Uirusu 27(1):21–26

    PubMed  CAS  Google Scholar 

  • Hale JH, Colless DH et al (1957) Investigation of the Malaysian form of Culex tritaeniorhynchus as a potential vector of Japanese B encephalitis virus on Singapore Island. Ann Trop Med Parasitol 51(1):17–25

    PubMed  CAS  Google Scholar 

  • Hale JH, Witherington DH (1953) Encephalitis in racehorses in Malaya. J Comp Pathol 63(3):195–198

    PubMed  CAS  Google Scholar 

  • Hamano M, Lim CK et al (2007) Detection of antibodies to Japanese encephalitis virus in the wild boars in Hiroshima prefecture, Japan. Epidemiol Infect 135(6):974–977

    PubMed  CAS  Google Scholar 

  • Hanna JN, Ritchie SA et al (1999) Japanese encephalitis in north Queensland, Australia, 1998. Med J Aust 170(11):533–536

    PubMed  CAS  Google Scholar 

  • Heathcote OH (1970) Japanese encephalitis in Sarawak: studies on juvenile mosquito populations. Trans R Soc Trop Med Hyg 64(4):483–488

    PubMed  CAS  Google Scholar 

  • Hemingway J (2005) Biological control of mosquitoes. Biology of disease vectors. In: Marquardt WC (ed) Elsevier Academic Press, Burlington, pp 649–660

    Google Scholar 

  • Hennessy S, Liu Z et al (1996) Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case-control study. Lancet 347(9015):1583–1586

    PubMed  CAS  Google Scholar 

  • Heresi GP, Mancias P et al (2004) Poliomyelitis-like syndrome in a child with West Nile virus infection. Pediatr Infect Dis J 23(8):788–789

    PubMed  Google Scholar 

  • Higgs S, Beaty BJ (2005) Natural cycles of vector-borne pathogens Biology of disease vectors, Biology of disease vectors. In: Marquardt WC (ed) Elsevier Academic Press, Burlington, pp 167–186

    Google Scholar 

  • Hill MN (1970) Japanese encephalitis in Sarawak: studies on adult mosquito populations. Trans R Soc Trop Med Hyg 64(4):489–496

    PubMed  CAS  Google Scholar 

  • Hills S, Dabbagh A et al (2009) Evidence and rationale for the World Health Organization recommended standards for Japanese encephalitis surveillance. BMC Infect Dis 9:214

    PubMed  Google Scholar 

  • Hills SL, Nett RJ et al (2012) Japanese encephalitis. In: Brunette GW (ed) CDC health information for international travel 2012: the yellow book, Oxford University Press, New York, pp 205–213

    Google Scholar 

  • Hlongwana KW, Mabaso ML et al (2009) Community knowledge, attitudes and practices (KAP) on malaria in Swaziland: a country earmarked for malaria elimination. Malar J 8:29

    PubMed  Google Scholar 

  • Hoke CH, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis BL, Kotchasenee S, Gingrich JB, Latendresse J, Fukai K et al (1988) Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med 319(10):608–614.

    PubMed  CAS  Google Scholar 

  • Hsu SM, Yen AM et al (2008) The impact of climate on Japanese encephalitis. Epidemiol Infect 136(7):980–987

    PubMed  CAS  Google Scholar 

  • Hsu ST, Chang LC et al (1972) The effect of vaccination with a live attenuated strain of Japanese encephalitis virus on stillbirths in swine in Taiwan. Bull World Health Organ 46(4):465–471

    PubMed  CAS  Google Scholar 

  • Igarashi A (2002) Control of Japanese encephalitis in Japan: immunization of humans and animals, and vector control. Curr Top Microbiol Immunol 267:139–152

    PubMed  CAS  Google Scholar 

  • Impoinvil DE, Solomon T et al (2011) The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal. PLoS One 6(7):e22192

    PubMed  CAS  Google Scholar 

  • Jmor F, Emsley HC et al (2008) The incidence of acute encephalitis syndrome in Western industrialised and tropical countries. Virol J 5:134

    PubMed  Google Scholar 

  • Johansen CA, Farrow RA et al (2003) Collection of wind-borne haematophagous insects in the Torres Strait, Australia. Med Vet Entomol 17(1):102–109

    PubMed  CAS  Google Scholar 

  • Johansen CA, Hall RA et al (2002) Detection and stability of Japanese encephalitis virus RNA and virus viability in dead infected mosquitoes under different storage conditions. Am J Trop Med Hyg 67(6):656–661

    PubMed  CAS  Google Scholar 

  • Johansson MA, Cummings DA et al (2009) Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6(11):e1000168

    PubMed  Google Scholar 

  • Jones KE, Patel NG et al (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

    PubMed  CAS  Google Scholar 

  • Kaiser R (1995) Tick-borne encephalitis in southern Germany. Lancet 345(8947):463

    PubMed  CAS  Google Scholar 

  • Kanamitsu M, Taniguchi K et al (1979) Geographic distribution of arbovirus antibodies in indigenous human populations in the Indo-Australian archipelago. Am J Trop Med Hyg 28(2):351–363

    PubMed  CAS  Google Scholar 

  • Kanojia PC, Geevarghese G (2004) First report on high-degree endophilism in Culex tritaeniorhynchus (Diptera: Culicidae) in an area endemic for Japanese encephalitis. J Med Entomol 41(5):994–996

    PubMed  CAS  Google Scholar 

  • Kanojia PC, Shetty PS et al (2003) A long-term study on vector abundance and seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh. Indian J Med Res 117:104–110

    PubMed  CAS  Google Scholar 

  • Karabatsos NE (ed) (1985). International catalogue of arboviruses including certain other viruses of vertebrates. American Society Tropical Medicine and Hygiene 3rd edn, San Antonio, pp 673–674

    Google Scholar 

  • Kay BH, Farrow RA (2000) Mosquito (Diptera: Culicidae) dispersal: implications for the epidemiology of Japanese and Murray Valley encephalitis viruses in Australia. J Med Entomol 37(6):797–801

    Google Scholar 

  • Keiser J, Maltese MF et al (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95(1):40–57

    PubMed  Google Scholar 

  • Khan SA, Narain K et al (1997) Biting behaviour and biting rhythm of potential Japanese encephalitis vectors in Assam. J Commun Dis 29(2):109–120

    PubMed  CAS  Google Scholar 

  • Konno J, Endo K et al (1966) Cyclic outbreaks of Japanese encephalitis among pigs and humans. Am J Epidemiol 84(2):292–300

    PubMed  CAS  Google Scholar 

  • Kumar R, Mathur A et al (1990) Clinical features and prognostic indicators of Japanese encephalitis in children in Lucknow (India). Indian J Med Res 91:321–327

    PubMed  CAS  Google Scholar 

  • Kunene S, Phillips AA et al (2011) A national policy for malaria elimination in Swaziland: a first for sub-Saharan Africa. Malar J 10:313

    PubMed  Google Scholar 

  • Lacey LA, Lacey CM (1990) The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc Suppl 2:1–93

    PubMed  CAS  Google Scholar 

  • Lam KH, Ellis TM et al (2005) Japanese encephalitis in a racing thoroughbred gelding in Hong Kong. Vet Rec 157(6):168–173

    PubMed  CAS  Google Scholar 

  • Leis AA, Stokic DS et al (2002) A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med 347(16):1279–1280

    PubMed  Google Scholar 

  • Lien JC, Huang WC et al (1980) Japanese encephalitis virus surveillance in the Taipei area, Taiwan in 1978. Southeast Asian J Trop Med Public Health 11(2):177–183

    PubMed  CAS  Google Scholar 

  • Lin H, Yang L et al (2012) Time series analysis of Japanese encephalitis and weather in Linyi City, China. Int J Public Health 57(2):289–296

    PubMed  Google Scholar 

  • Linthicum KJ, Platt K et al (1996) Dengue 3 virus distribution in the mosquito Aedes aegypti: an immunocytochemical study. Med Vet Entomol 10(1):87–92

    Google Scholar 

  • Lipkin WI (2008) Pathogen discovery. PLoS Pathog 4(4):e1000002

    PubMed  Google Scholar 

  • Liu W, Clemens JD et al (2008) Cost-effectiveness of Japanese encephalitis (JE) immunization in Bali, Indonesia. Vaccine 26(35):4456–4460

    PubMed  Google Scholar 

  • Liu, W, Gibbons RV et al (2010) Risk factors for Japanese encephalitis: a case-control study. Epidemiol Infect 138(9):1292–1297

    PubMed  CAS  Google Scholar 

  • Luo D, Ying H et al (1995) Socio-economic status and micro-environmental factors in relation to the risk of Japanese encephalitis: a case-control study. Southeast Asian J Trop Med Pub Health 26(2):276–279

    Google Scholar 

  • Mackenzie JS, Johansen CA et al (2002) Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr Top Microbiol Immunol 267:49–73

    PubMed  CAS  Google Scholar 

  • Maeda O, Takenokuma K et al (1978) Epidemiological studies on Japanese encephalitis in Kyoto City area, Japan. IV. Natural infection in sentinel pigs. Jpn J Med Sci Biol 31(4):317–324

    PubMed  CAS  Google Scholar 

  • Mani TR, Rao CV et al (1991) Surveillance for Japanese encephalitis in villages near Madurai, Tamil Nadu, India. Trans R Soc Trop Med Hyg 85(2):287–291

    PubMed  CAS  Google Scholar 

  • Masuoka P, Klein TA et al (2010) Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. Geospat Health 5(1):45–57

    PubMed  Google Scholar 

  • McMichael AJ, Patz J et al (1998) Impacts of global environmental change on future health and health care in tropical countries. Br Med Bull 54(2):475–488

    PubMed  CAS  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Nino. Science 283(5404):950–954

    PubMed  CAS  Google Scholar 

  • Ming JG, Jin H et al (1993) Autumn southward ‘return’migration of the mosquito Culex tritaeniorhynchus in China. Med Vet Entomol 7(4):323–327

    PubMed  CAS  Google Scholar 

  • Misra UK, Kalita J (2001) Seizures in Japanese encephalitis. J Neurol Sci 190(1–2):57–60

    PubMed  CAS  Google Scholar 

  • Mitchell CJ, Chen PS et al (1973) Host-feeding patterns and behaviour of 4 Culex species in an endemic area of Japanese encephalitis. Bull World Health Organ 49(3):293–299

    PubMed  CAS  Google Scholar 

  • Mogi M (1983) Relationship between number of human Japanese encephalitis cases and summer meteorological conditions in Nagasaki, Japan. Am J Trop Med Hyg 32(1):170–174

    PubMed  CAS  Google Scholar 

  • Mohammed MA, Galbraith SE et al (2011) Molecular phylogenetic and evolutionary analyses of Muar strain of Japanese encephalitis virus reveal it is the missing fifth genotype. Infect Genet Evol 11(5):855–862

    PubMed  CAS  Google Scholar 

  • Monath TP (1988) Japanese encephalitis—a plague of the Orient. N Engl J Med 319(10):641–643

    PubMed  CAS  Google Scholar 

  • Monath TP (2002) Japanese encephalitis vaccines: current vaccines and future prospects. Curr Top Microbiol Immunol 267:105–138

    PubMed  CAS  Google Scholar 

  • Morita K (2009) Molecular epidemiology of Japanese encephalitis in East Asia. Vaccine 27(50):7131–7132

    PubMed  CAS  Google Scholar 

  • Moss WJ, Norris DE et al (2012) Challenges and prospects for malaria elimination in the Southern Africa region. Acta Trop 121(3):207–211

    PubMed  Google Scholar 

  • Mourya DT, Soman RS (1999) Venereal transmission of Japanese encephalitis virus in Culex bitaeniorhynchus mosquitoes. Indian J Med Res 109:202–203

    PubMed  CAS  Google Scholar 

  • Murty US, Rao MS et al (2010) The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India. J Vector Borne Dis 47(1):26–32

    PubMed  Google Scholar 

  • Mwandawiro C, Boots M et al (2000) Heterogeneity in the host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand. Trans R Soc Trop Med Hyg 94(3):238–242

    PubMed  CAS  Google Scholar 

  • Nabeshima T, Loan HT et al (2009) Evidence of frequent introductions of Japanese encephalitis virus from south–east Asia and continental east Asia to Japan. J Gen Virol 90(Pt 4):827–832

    PubMed  CAS  Google Scholar 

  • Nakamura H (1972) Japanese encephalitis in horses in Japan. Equine Vet J 4(3):155–156

    PubMed  CAS  Google Scholar 

  • Ndiva Mongoh M, Hearne R et al (2008) The economic impact of West Nile virus infection in horses in the North Dakota equine industry in 2002. Trop Anim Health Prod 40(1):69–76

    PubMed  CAS  Google Scholar 

  • Nga PT, del Carmen Parquet M et al (2004) Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. J Gen Virol 85(Pt 6):1625–1631

    PubMed  CAS  Google Scholar 

  • Nitatpattana N, Le Flohic G et al (2011) Elevated Japanese encephalitis virus activity monitored by domestic sentinel piglets in Thailand. Vector Borne Zoonotic Dis 11(4):391–394

    PubMed  Google Scholar 

  • Nourein AB, Abass MA et al (2011) Identifying residual foci of Plasmodium falciparum infections for malaria elimination: the urban context of Khartoum, Sudan. PLoS One 6(2):e16948

    PubMed  CAS  Google Scholar 

  • Nsubuga P, White ME et al (2006) Public health surveillance: a tool for targeting and monitoring interventions. World Bank, Washington

    Google Scholar 

  • Ogata M, Nagao Y et al (1970) Infection of herons and domestic fowls with Japanese encephalitis virus with specific reference to maternal antibody of hen (epidemiological study on Japanese encephalitis 26). Acta Med Okayama 24(2):175–184

    PubMed  CAS  Google Scholar 

  • OhnoY, Sato H et al (2009) Detection of antibodies against Japanese encephalitis virus in raccoons, raccoon dogs and wild boars in Japan. J Vet Med Sci 71(8):1035–1039

    PubMed  Google Scholar 

  • Okech BA, Mwobobia IK et al (2008) Use of integrated malaria management reduces malaria in Kenya. PLoS One 3(12):e4050

    PubMed  Google Scholar 

  • Okuno T, Mitchell CJ et al (1973) Seasonal infection of culex mosquitos and swine with Japanese encephalitis virus. Bull World Health Organ 49(4):347–352

    PubMed  CAS  Google Scholar 

  • Olson JG, Atmosoedjono S et al (1983) Correlation between population indices of Culex tritaeniorhynchus and Cx. gelidus (Diptera: Culicidae) and rainfall in Kapuk, Indonesia. J Med Entomol 20(1):108–109

    PubMed  CAS  Google Scholar 

  • Oya A, Doi R et al (1983) Studies on Japanese encephalitis virus infection of reptiles. I. Experimental infection of snakes and lizards. Jpn J Exp Med 53(2):117–123

    PubMed  CAS  Google Scholar 

  • Pan XL, Liu H et al (2011) Emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. J Virol 85(19):9847–9853

    PubMed  CAS  Google Scholar 

  • Pappaioanou M (2004) Veterinary medicine protecting and promoting the public’s health and well-being. Prev Vet Med 62(3):153–163

    PubMed  Google Scholar 

  • Patz JA, Graczyk TK et al (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

    PubMed  CAS  Google Scholar 

  • Peiris JS, Amerasinghe FP et al (1993) Japanese encephalitis in Sri Lanka: comparison of vector and virus ecology in different agro-climatic areas. Trans R Soc Trop Med Hyg 87(5):541–548

    PubMed  CAS  Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic Press, London

    Google Scholar 

  • Platt KB, Linthicum KJ et al (1997) Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57(2):119–125

    PubMed  CAS  Google Scholar 

  • Poneprasert B (1989) Japanese encephalitis in children in northern Thailand. Southeast Asian J Trop Med Pub Health 20(4):599–603

    CAS  Google Scholar 

  • Qualls WA, Day JF et al (2011) Altered response to DEET repellent after infection of Aedes aegypti (Diptera: Culicidae) with Sindbis virus. J Med Entomol 48(6):1226–1230

    PubMed  CAS  Google Scholar 

  • Qualls WA, Day JF et al (2012) Altered behavioral responses of Sindbis virus-infected Aedes aegypti (Diptera: Culicidae) to DEET and non-DEET based insect repellents. Acta Trop 122(3):284–290

    Google Scholar 

  • Rajendran R, Reuben R et al (1995) Prospects and problems of intermittent irrigation for control of vector breeding in rice fields in southern India. Ann Trop Med Parasitol 89(5):541–549

    PubMed  CAS  Google Scholar 

  • Rao DR, Reuben R et al (1995) Development of combined use of neem (Azadirachta indica) and water management for the control of culicine mosquitoes in rice fields. Med Vet Entomol 9(1):25–33

    PubMed  CAS  Google Scholar 

  • Rao DR, Reuben R et al (1992) Evaluation of neem, Azadirachta indica, with and without water management, for the control of culicine mosquito larvae in rice-fields. Med Vet Entomol 6(4):318–324

    PubMed  CAS  Google Scholar 

  • Raut CG, Thakare JP et al (2003) A focal outbreak of Japanese encephalitis among horses in Pune district, India. J Commun Dis 35(1):40–42

    PubMed  CAS  Google Scholar 

  • Reisen WK (1978) A quantitative mosquito survey of 7 villages in Punjab Province, Pakistan with notes on bionomics, sampling methodology and the effects of insecticides. Southeast Asian J Trop Med Pub Health 9(4):587–601

    CAS  Google Scholar 

  • Reisen WK, Aslamkhan M et al (1976) The effects of climatic patterns and agricultural practices on the population dynamics of Culex tritaeniorhynchus in Asia. Southeast Asian J Trop Med Pub Health (1):61–71

    Google Scholar 

  • Reuben R (1971) Studies on the mosquitoes of North Arcot District, Madras State, India. 6. Seasonal prevalence of the Culex vishnui group of species. J Med Entomol 8(4):367–371

    Google Scholar 

  • Reuben R, Thenmozhi V et al (1992) Mosquito blood feeding patterns as a factor in the epidemiology of Japanese encephalitis in southern India. Am J Trop Med Hyg 46(6):654–663

    PubMed  CAS  Google Scholar 

  • Richards EE, Masuoka P et al (2010) The relationship between mosquito abundance and rice field density in the Republic of Korea. Int J Health Geogr 9:32

    PubMed  Google Scholar 

  • Ritchie SA, Rochester W (2001) Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg Infect Dis 7(5):900–903

    PubMed  CAS  Google Scholar 

  • Rosen L (1986) The natural history of Japanese encephalitis virus. Annu Rev Microbiol 40:395–414

    PubMed  CAS  Google Scholar 

  • Saito M, Nakata K et al (2009a) Proposal for Japanese encephalitis surveillance using captured invasive mongooses under an eradication project on Okinawa Island, Japan. Vector Borne Zoonotic Dis 9(3):259–266

    PubMed  Google Scholar 

  • Saito M, Osa Y et al (2009b) Antibodies to flaviviruses in wild ducks captured in Hokkaido, Japan: risk assessment of invasive flaviviruses. Vector Borne Zoonotic Dis 9(3):253–258

    PubMed  Google Scholar 

  • Sasaki O, Karoji Y et al (1982) Protection of pigs against mosquito-borne Japanese encephalitis virus by immunization with a live attenuated vaccine. Antiviral Res 2(6):355–360

    PubMed  CAS  Google Scholar 

  • Saul A (2003) Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J 2:32

    PubMed  Google Scholar 

  • Scherer WF, Buescher EL et al (1959a) Ecologic studies of Japanese encephalitis virus in Japan. III. Mosquito factors. Zootropism and vertical flight of Culex tritaeniorhynchus with observations on variations in collections from animal-baited traps in different habitats. Am J Trop Med Hyg 8:665–677

    PubMed  CAS  Google Scholar 

  • Scherer WF, Buescher EL et al (1959b) Ecologic studies of Japanese encephalitis virus in Japan. V. Avian factors. Am J Trop Med Hyg 8:689–697

    PubMed  CAS  Google Scholar 

  • Scherer WF, Kitaoka M et al (1959c) Ecologic studies of Japanese encephalitis virus in Japan. VII. Human infection. Am J Trop Med Hyg 8:707–715

    PubMed  CAS  Google Scholar 

  • Scherer WF, Moyer JT et al (1959d) Immunologic studies of Japanese encephalitis virus in Japan. V. Maternal antibodies, antibody responses and viremia following infection of swine. J Immunol 83:620–626

    PubMed  CAS  Google Scholar 

  • Scherer WF, Moyer JT et al (1959e) Ecologic studies of Japanese encephalitis virus in Japan. VI. Swine infection. Am J Trop Med Hyg 8:698–706

    PubMed  CAS  Google Scholar 

  • Self LS, Ree HI et al (1973) Aerial applications of ultra-low-volume insecticides to control the vector of Japanese encephalitis in Korea. Bull World Health Organ 49(4):353–357

    PubMed  CAS  Google Scholar 

  • Sellers RF (1980) Weather, host and vector—their interplay in the spread of insect-borne animal virus diseases. J Hyg (Lond) 85(1):65–102

    CAS  Google Scholar 

  • Shmueli G (2005) Wavelet-based monitoring for modern biosurveillance. Baltimore, University of Marlyand, Robert H Smith School of Business. Technical report, RHS-06-002

    Google Scholar 

  • Shortridge KF, Ng MH et al (1974) Arbovirus infections in reptiles: immunological evidence for a high incidence of Japanese encephalitis virus in the cobra Naja naja. Trans R Soc Trop Med Hyg 68(6):454–460

    Google Scholar 

  • Shortridge KF, Oya A et al (1977) Japanese encephalitis virus antibody in cold-blooded animals. Trans R Soc Trop Med Hyg 71(3):261–262

    PubMed  CAS  Google Scholar 

  • Shultz GW, Hayes CG (1993) Ecology of mosquitos (Diptera: Culicidae) at a site endemic with Japanese encephalitis on Luzon, Republic of the Philippines. Southeast Asian J Trop Med Pub Health 24(1):157–164

    CAS  Google Scholar 

  • Simpson DI, Smith CE et al (1976) Arbovirus infections in Sarawak: the role of the domestic pig. Trans R Soc Trop Med Hyg 70(1):66–72

    PubMed  CAS  Google Scholar 

  • Siraprapasiri T, Sawaddiwudhipong W et al (1997) Cost benefit analysis of Japanese encephalitis vaccination program in Thailand. Southeast Asian J Trop Med Pub Health 28(1):143–148

    CAS  Google Scholar 

  • Smith CE (1970) Studies on arbovirus epidemiology associated with established and developing rice culture. Introduction. Trans R Soc Trop Med Hyg 64(4):481–482

    PubMed  CAS  Google Scholar 

  • Solomon T (2006) Control of Japanese encephalitis—within our grasp? N Engl J Med 355(9):869–871

    PubMed  CAS  Google Scholar 

  • Solomon T (2010) Japaense encephalitis vaccine. In: Zuckerman JN, Jong EC (eds) Travelers’ vaccines. Shelton, connecticut, people, Medical Publishing House-USA, pp 229–276

    Google Scholar 

  • Solomon T, Dung NM et al (2002) Seizures and raised intracranial pressure in Vietnamese patients with Japanese encephalitis. Brain 125(Pt 5):1084–1093

    Google Scholar 

  • Solomon T, Kneen R et al (1998) Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet 351(9109):1094–1097

    PubMed  CAS  Google Scholar 

  • Solomon T, Ni H et al (2003) Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 77(5):3091–3098

    PubMed  CAS  Google Scholar 

  • Solomon T, Thao TT et al (2008) A cohort study to assess the new WHO Japanese encephalitis surveillance standards. Bull World Health Organ 86(3):178–186

    PubMed  Google Scholar 

  • Spickler AR, Roth JA et al (2010) Emerging and exotic diseases of animals. The Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames

    Google Scholar 

  • Sulkin SE, Allen R et al (1970) Studies of arthropod-borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally infected bats. Am J Trop Med Hyg 19(1):77–87

    PubMed  CAS  Google Scholar 

  • Sunish IP, Reuben R (2001) Factors influencing the abundance of Japanese encephalitis vectors in ricefields in India—I. Abiotic. Med Vet Entomol 15(4):381–392

    PubMed  CAS  Google Scholar 

  • Takahashi M (1976) The effects of environmental and physiological conditions of Culex tritaeniorhynchus on the pattern of transmission of Japanese encephalitis virus. J Med Entomol 13(3):275–284

    PubMed  CAS  Google Scholar 

  • Takashima I, Watanabe T et al (1988) Ecological studies of Japanese encephalitis virus in Hokkaido: interepidemic outbreaks of swine abortion and evidence for the virus to overwinter locally. Am J Trop Med Hyg 38(2):420–427

    PubMed  CAS  Google Scholar 

  • Taylor LH, Latham SM et al (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989

    PubMed  CAS  Google Scholar 

  • Thai KT, Cazelles B et al (2010) Dengue dynamics in Binh Thuan province, southern Vietnam: periodicity, synchronicity and climate variability. PLoS Negl Trop Dis 4(7):e747

    PubMed  Google Scholar 

  • The American Veterinary Medical Association (2008). One health: a new professional imperative. One Health Initiative Task Force

    Google Scholar 

  • Thenmozhi V, Rajendran R et al (2006) Long-term study of Japanese encephalitis virus infection in Anopheles subpictus in Cuddalore district, Tamil Nadu, South India. Trop Med Int Health 11(3):288–293

    PubMed  CAS  Google Scholar 

  • Ting SH, Tan HC et al (2004) Seroepidemiology of neutralizing antibodies to Japanese encephalitis virus in Singapore: continued transmission despite abolishment of pig farming? Acta Trop 92(3):187–191

    PubMed  Google Scholar 

  • Tipayamongkholgul M, Fang CT et al (2009) Effects of the El Nino-southern oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 9:422

    PubMed  Google Scholar 

  • Touch S, Suraratdecha C et al (2010) A cost-effectiveness analysis of Japanese encephalitis vaccine in Cambodia. Vaccine 28(29):4593–4599

    PubMed  Google Scholar 

  • Tsai TF, Chang J et al (1999) Japanese encephalitis vaccines. In: Plotkin SA, Orenstein WA (eds) Vaccines, WB Saunders, Philadelphia, 672–710

    Google Scholar 

  • U.S. General Accounting Office (GAO) (2000). West Nile virus outbreak: lessons for public health preparedness. GAO/HEHS-00-180

    Google Scholar 

  • van-den-Hurk AF, Ritchie SA et al (2008) Domestic pigs and Japanese encephalitis virus infection, Australia. Emerg Infect Dis 14(11):1736–1738

    Google Scholar 

  • van den Hurk AF, Ritchie SA et al (2009a) Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17–35

    PubMed  Google Scholar 

  • van den Hurk AF, Smith CS et al (2009b) Transmission of Japanese encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am J Trop Med Hyg 81(3):457–462

    PubMed  Google Scholar 

  • Vaughn DW, Hoke CH Jr (1992) The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol Rev 14:197–221

    PubMed  CAS  Google Scholar 

  • Victor TJ, Reuben R (2000) Effects of organic and inorganic fertilisers on mosquito populations in rice fields of southern India. Med Vet Entomol 14(4):361–368

    PubMed  CAS  Google Scholar 

  • Vythilingam I, Oda K et al (1997) Abundance, parity, and Japanese encephalitis virus infection of mosquitoes (Diptera:Culicidae) in Sepang District, Malaysia. J Med Entomol 34(3):257–262

    PubMed  CAS  Google Scholar 

  • Wada T, Kawai S et al (1970) Ecology of vector mosquitoes of Japanese encephalitis, especially of Culex tritaeniorhynchus. II. Nocturnal activity and host preference based on all-night catches by different methods in 1965 and 1966 near Nagasaki city. Tropical Medicine 12(2):79–89

    Google Scholar 

  • Wang HY, Takasaki T et al (2007) Molecular epidemiological analysis of Japanese encephalitis virus in China. J Gen Virol 88(Pt 3):885–894

    PubMed  CAS  Google Scholar 

  • Wang JL, Pan XL et al (2009) Japanese encephalitis viruses from bats in Yunnan, China. Emerg Infect Dis 15(6):939–942

    PubMed  Google Scholar 

  • Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85(2):328–345

    PubMed  CAS  Google Scholar 

  • Wong SC, Ooi MH et al (2008) A decade of Japanese encephalitis surveillance in Sarawak, Malaysia: 1997–2006. Trop Med Int Health 13(1):52–55

    PubMed  Google Scholar 

  • World Health Organization (1980) Environmental management for vector control. Third report of the WHO expert committee on vector biology and control. World Health Organ Tech Rep Ser 649:1–75

    Google Scholar 

  • World Health Organization (1983) Integrated vector control. Seventh report of the WHO expert committee on vector biology and control. World Health Organ Tech Rep Ser 688:1–72

    Google Scholar 

  • World Health Organization (1999). The world health report 1999–making a difference

    Google Scholar 

  • World Health Organization. (2004) Strategy development and monitoring for parasitic diseases and vector control team. Global strategic framework for integrated vector management, World Health Organization, Geneva

    Google Scholar 

  • Wu YC, Huang YS et al (1999) The epidemiology of Japanese encephalitis on Taiwan during 1966–1997. Am J Trop Med Hyg 61(1):78–84

    PubMed  CAS  Google Scholar 

  • Yang, DK, Kweon CH et al (2007) The seroprevalence of Japanese encephalitis virus in goats raised in Korea. J Vet Sci 8(2):197–199

    PubMed  Google Scholar 

  • Yang DK, Kim BH et al (2008) Serosurveillance for Japanese encephalitis, Akabane, and Aino viruses for Thoroughbred horses in Korea. J Vet Sci 9(4):381–385

    PubMed  Google Scholar 

  • Yang DK, Oh YI et al (2011) Serosurveillance for Japanese encephalitis virus in wild birds captured in Korea. J Vet Sci 12(4):373–377

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Solomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Impoinvil, D.E., Baylis, M., Solomon, T. (2012). Japanese Encephalitis: On the One Health Agenda. In: Mackenzie, J., Jeggo, M., Daszak, P., Richt, J. (eds) One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases. Current Topics in Microbiology and Immunology, vol 365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_243

Download citation

Publish with us

Policies and ethics