Skip to main content

Single-Molecule Magnets on Surfaces

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

Encoding and manipulating information through the spin degrees of freedom of individual magnetic molecules or atoms is one of the central challenges in the continuing trend towards molecular/atomic scale electronics. With their large magnetic moment and long spin relaxation time, single-molecule magnets (SMMs) are of special importance in this emerging field. Their electrical addressing at the molecular level appears now well within reach using STM methods, which require to organize SMMs on a conducting surface. In this chapter, we present a critical overview of the latest achievements in the deposition of SMMs as monolayers or submonolayers on native or prefunctionalized surfaces. Special emphasis is placed on the selection and design of molecular structures that withstand solution or vapour-phase processing and that maintain their magnetic functionality on a surface. Chemical strategies to control the strength of molecule–substrate interaction and the molecular orientation on the surface are also illustrated. Rewardingly, these efforts have shown that the distinctive properties of SMMs, i.e. slow spin relaxation and quantum tunnelling of the magnetic moment, persist in metal-wired molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 2009, Journal of Materials Chemistry has published a themed issue on molecular spintronics and quantum computing. See ref. [12].

  2. 2.

    Here we adopt Rinehart definition of T B as the temperature affording a relaxation time of 100 s in zero applied field. The need for a reference relaxation time arises from the fact that different techniques have different measurement times and, consequently, detect blocking of the magnetic moment at different temperatures.

  3. 3.

    Projection coefficients define the relationship between local anisotropic contributions (among which single-ion terms) and the overall anisotropy (D) associated with each total spin state. They can be computed using recursive relations. For details see [23].

  4. 4.

    In an XMCD experiment, absorption cross sections for photon helicity parallel (σ+) and antiparallel (σ) to the applied field are separately measured and the XMCD signal is defined as the difference (σ − σ+). It is usually expressed as percentage of the maximum in the isotropic spectrum, that can be estimated as (σ+ + σ)/2 in the case of transition metals. Since the isotropic spectrum intensity is proportional to the number of absorbing atoms, the XMCD signal so defined (XMCD%) provides the dichroic response per atom.

  5. 5.

    Similar complexes can also be prepared in a single step, as described for related systems containing acetylacetonato ligands [131].

  6. 6.

    In the absence of superexchange interactions and saturation effects, both the overall magnetization (as probed by traditional magnetometry) and the local magnetic polarizations at metal sites (as probed by XMCD) follow the Curie law. When superexchange interactions are switched on, the local magnetic polarizations are not necessarily proportional to each other and to molecular magnetization [147, 153]. In Fe3Cr systems, the magnetic polarization at Fe sites is always parallel to the applied field, while that at the Cr site must switch from field antiparallel to field parallel with increasing T. The corresponding XMCD signals are thus expected to exhibit completely different T dependences. Notice that in the temperature range of interest magnetic anisotropy has no effect on magnetic behaviour and can be neglected.

  7. 7.

    While XMCD utilizes circularly polarized X-rays to study magnetism, XNLD uses linearly polarized radiation to probe structural order. In an XNLD experiment, the beam is tilted from the surface normal and the XNLD signal is defined as the difference in response to vertically (σV) and horizontally (σH) polarized radiation, (σV−σH). Normalization of the XNLD signal is carried out as described for XMCD (see footnote 3).

Abbreviations

4-mobca:

4′-Mercapto-octafluorobiphenyl-4-carboxylic acid

4-mtba:

4-Mercapto-tetrafluorobenzoic acid

AC:

Alternating current

DFT:

Density functional theory

DPN:

Dip-pen nanolithography

EPR:

Electron paramagnetic resonance

ESI-MS:

Electrospray ionization mass spectrometry

Et-saoH2 :

2-Hydroxyphenylpropanone oxime

H2hmb:

N′-(2-hydroxy-3-methoxybenzylidene)benzhydrazide

H2Pc:

Phthalocyanine

H2sao:

2-Hydroxybenzaldehyde oxime

Hbiph:

Biphenyl-4-carboxylic acid

Hdmbz:

3,5-Dimethylbenzoic acid

Hdpm:

Dipivaloylmethane

Hhfac:

Hexafluoroacetylacetone

HOPG:

Highly oriented pyrolitic graphite

Hpfb:

4-Fluorobenzoic acid

Hpta:

Pivaloyl trifluoromethyl acetone

Hth:

3-Thiophene-carboxylic acid

Htpc:

p-Terphenyl-4-carboxylic acid

LnDD:

Lanthanide double-decker

ML:

Monolayer

NP:

Nanoparticle

PyNO:

Pyridine N-oxide

QT:

Quantum tunnelling

SAM:

Self-assembled monolayer

SH:

Spin hamiltonian

SMM:

Single-molecule magnet

SQUID:

Superconducting quantum interference device

STM:

Scanning tunnelling microscope/scanning tunnelling microscopy

STS:

Scanning tunnelling spectroscopy

T B :

Blocking temperature

TEY:

Total electron yield

ToF-SIMS:

Time of flight secondary ion mass spectrometry

UHV:

Ultra-high vacuum

VSM:

Vibrating sample magnetometer

XAS:

X-ray absorption spectroscopy

XMCD:

X-ray magnetic circular dichroism

XNLD:

X-ray natural linear dichroism

XPS:

X-ray photoelectron spectroscopy

ZFS:

Zero-field splitting

μSR:

Muon spin relaxation

References

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    CAS  Google Scholar 

  2. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Google Scholar 

  3. Friedman JR, Sarachik MP (1996) Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys Rev Lett 76:3830–3833

    CAS  Google Scholar 

  4. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Macroscopic quantum tunnelling of the magnetization in a single crystal of nanomagnets. Nature 383:145–147

    CAS  Google Scholar 

  5. Ziemelis K (2008) Nature Milestones Spin, Milestone 22: (1996) Mesoscopic tunnelling of magnetization. http://www.nature.com/milestones/milespin/full/milespin22.html

  6. Caneschi A, Gatteschi D, Sangregorio C, Sessoli R, Sorace L, Cornia A, Novak MA, Paulsen C, Wernsdorfer W (1999) The molecular approach to nanoscale magnetism. J Magn Magn Mater 200:182–201

    CAS  Google Scholar 

  7. Chappert C, Fert A, Nguyen Van Dau F (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823

    CAS  Google Scholar 

  8. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    CAS  Google Scholar 

  9. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355

    CAS  Google Scholar 

  10. Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem Asian J 7:1154–1169

    CAS  Google Scholar 

  11. Jiang SD, Goß K, Cervetti C, Bogani L (2012) An introduction to molecular spintronics. Sci China Chem 55:867–882

    CAS  Google Scholar 

  12. Coronado E, Epstein AJ (2009) J Mater Chem 19:1670–1671

    Google Scholar 

  13. Timco GA, Faust TB, Tuna F, Winpenny REP (2011) Linking heterometallic rings for quantum information processing and amusement. Chem Soc Rev 40:3067–3075

    CAS  Google Scholar 

  14. Troiani F, Affronte M (2011) Molecular spins for quantum information technologies. Chem Soc Rev 40:3119–3129

    CAS  Google Scholar 

  15. Aromí G, Aguilà D, Gamez P, Luis F, Roubeau O (2012) Design of magnetic coordination complexes for quantum computing. Chem Soc Rev 41:537–546

    Google Scholar 

  16. Wedge CJ, Timco GA, Spielberg ET, George RE, Tuna F, Rigby S, McInnes EJL, Winpenny REP, Blundell SJ, Ardavan A (2012) Chemical engineering of molecular qubits. Phys Rev Lett 108:107204

    CAS  Google Scholar 

  17. Bagai R, Christou G (2009) The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem Soc Rev 38:1011–1026

    CAS  Google Scholar 

  18. Chakov NE, Lee SC, Harter AG, Kuhns PL, Reyes AP, Hill SO, Dalal NS, Wernsdorfer W, Abboud KA, Christou G (2006) The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4]·4CH2Cl2. J Am Chem Soc 128:6975–6989

    CAS  Google Scholar 

  19. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129:2754–2755

    CAS  Google Scholar 

  20. Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N2 3− radical-bridged terbium complex exhibiting magnetic hysteresis at 14K. J Am Chem Soc 133:14236–14239

    CAS  Google Scholar 

  21. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037

    CAS  Google Scholar 

  22. Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238

    CAS  Google Scholar 

  23. Bencini A, Gatteschi D (1990) EPR of exchange-coupled systems. Springer, Berlin

    Google Scholar 

  24. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695

    CAS  Google Scholar 

  25. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 128:2078–2085

    Google Scholar 

  26. Chilton NF, Collison D, McInnes EJL, Winpenny REP, Soncini A (2013) An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat Commun 4:2551

    Google Scholar 

  27. Blagg RJ, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes EJL, Chibotaru LF, Winpenny REP (2013) Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat Chem 5:673–678

    CAS  Google Scholar 

  28. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148

    CAS  Google Scholar 

  29. Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42:3278–3288

    CAS  Google Scholar 

  30. Zhang P, Guo YN, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257:1728–1763

    CAS  Google Scholar 

  31. Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104

    CAS  Google Scholar 

  32. Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341

    CAS  Google Scholar 

  33. Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S (2011) An organometallic single-ion magnet. J Am Chem Soc 133:4730–4733

    CAS  Google Scholar 

  34. Lucaccini E, Sorace L, Perfetti M, Costes JP, Sessoli R (2014) Beyond the anisotropy barrier: slow relaxation of the magnetization in both easy-axis and easy-plane Ln(trensal) complexes. Chem Commun 50:1648–1651

    CAS  Google Scholar 

  35. Mougel V, Chatelain L, Pécaut J, Caciuffo R, Colineau E, Griveau JC, Mazzanti M (2012) Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. Nat Chem 4:1011–1017

    CAS  Google Scholar 

  36. Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A (2013) Modeling the properties of uranium-based single ion magnets. Chem Sci 4:938–946

    Google Scholar 

  37. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat Chem 3:538–542

    CAS  Google Scholar 

  38. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F, Long JR (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5:577–581

    CAS  Google Scholar 

  39. Martínez-Lillo J, Mastropietro TF, Lhotel E, Paulsen C, Cano J, De Munno G, Faus J, Lloret F, Julve M, Nellutla S, Krzystek J (2013) Highly anisotropic rhenium(IV) complexes: new examples of mononuclear single-molecule magnets. J Am Chem Soc 135:13737–13748

    Google Scholar 

  40. Vallejo J, Pascual-Álvarez A, Cano J, Castro I, Julve M, Lloret F, Krzystek J, De Munno G, Armentano D, Wernsdorfer W, Ruiz-García R, Pardo E (2013) Field-induced hysteresis and quantum tunneling of the magnetization in a mononuclear manganese(III) complex. Angew Chem Int Ed 42:14075–14079

    Google Scholar 

  41. Dey M, Gogoi N (2013) Geometry-mediated enhancement of single-ion anisotropy: a route to single-molecule magnets with a high blocking temperature. Angew Chem Int Ed 52:12780–12782

    CAS  Google Scholar 

  42. Gomez-Coca S, Cremades E, Aliaga-Alcalde N, Ruiz E (2013) Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. J Am Chem Soc 135:7010–7018

    CAS  Google Scholar 

  43. Rostamzadeh Renani F, Kirczenow G (2013) Switching of a quantum dot spin valve by single molecule magnets. Phys Rev B 87:121403(R)

    Google Scholar 

  44. Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W (2011) Supramolecular spin valves. Nat Mater 10:502–506

    CAS  Google Scholar 

  45. Hong K, Kim WY (2013) Fano-resonance-driven spin-valve effect using single-molecule magnets. Angew Chem Int Ed 52:3389–3393

    CAS  Google Scholar 

  46. Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS Nano 7:6225–6236

    CAS  Google Scholar 

  47. Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat Nanotechnol 8:165–169

    CAS  Google Scholar 

  48. Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11:2634–2639

    CAS  Google Scholar 

  49. Osorio EA, Bjørnholm T, Lehn JM, Ruben M, van der Zant HSJ (2008) Single-molecule transport in three-terminal devices. J Phys Condens Matter 20:374121

    CAS  Google Scholar 

  50. Jo MH, Grose JE, Baheti K, Deshmukh MM, Sokol JJ, Rumberger EM, Hendrickson DN, Long JR, Park H, Ralph DC (2006) Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett 6:2014–2020

    CAS  Google Scholar 

  51. Heersche HB, de Groot Z, Folk JA, van der Zant HSJ, Romeike C, Wegewijs MR, Zobbi L, Barreca D, Tondello E, Cornia A (2006) Electron transport through single Mn12 molecular magnets. Phys Rev Lett 96:206801

    CAS  Google Scholar 

  52. Grose JE, Tam ES, Timm C, Scheloske M, Ulgut B, Parks JJ, Abruña HD, Harneit W, Ralph DC (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater 7:884–889

    CAS  Google Scholar 

  53. Zyazin AS, van den Berg JWG, Osorio EA, van der Zant HSJ, Konstantinidis NP, Leijnse M, Wegewijs MR, May F, Hofstetter W, Danieli C, Cornia A (2010) Electric field controlled magnetic anisotropy in a single molecule. Nano Lett 10:3307–3311

    CAS  Google Scholar 

  54. Osorio EA, Moth-Poulsen K, van der Zant HSJ, Paaske J, Hedegård P, Flensberg K, Bendix J, Bjørnholm T (2010) Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett 10:105–110

    CAS  Google Scholar 

  55. Haque F, Langhirt M, del Barco E, Taguchi T, Christou G (2011) Magnetic field dependent transport through a Mn4 single-molecule magnet. J Appl Phys 109:07B112

    Google Scholar 

  56. Wagner S, Kisslinger F, Ballmann S, Schramm F, Chandrasekar R, Bodenstein T, Fuhr O, Secker D, Fink K, Ruben M, Weber HB (2013) Switching of a coupled spin pair in a single-molecule junction. Nat Nanotechnol 8:575–579

    CAS  Google Scholar 

  57. Burzurí E, Zyazin AS, Cornia A, van der Zant HSJ (2012) Direct observation of magnetic anisotropy in an individual Fe4 single-molecule magnet. Phys Rev Lett 109:147203

    Google Scholar 

  58. Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488:357–360

    CAS  Google Scholar 

  59. Kim GH, Kim TS (2004) Electronic transport in single-molecule magnets on metallic surfaces. Phys Rev Lett 92:137203

    Google Scholar 

  60. Misiorny M, Barnaś J (2007) Magnetic switching of a single molecular magnet due to spin-polarized current. Phys Rev B 75:134425

    Google Scholar 

  61. Misiorny M, Weymann I, Barnaś J (2010) Spin diode behavior in transport through single-molecule magnets. Europhys Lett 89:18003

    Google Scholar 

  62. Wang RQ, Shen R, Zhu SL, Wang B, Xing DY (2012) Inelastic transport detection of spin quantum tunneling and spin relaxation in single-molecule magnets in the absence of a magnetic field. Phys Rev B 85:165432

    Google Scholar 

  63. Misiorny M, Barnaś J (2013) Effects of transverse magnetic anisotropy on current-induced spin switching. Phys Rev Lett 111:046603

    Google Scholar 

  64. Hirjibehedin CF, Lin CY, Otte AF, Ternes M, Lutz CP, Jones BA, Heinrich AJ (2007) Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317:1199–1203

    CAS  Google Scholar 

  65. Meier F, Zhou L, Wiebe J, Wiesendanger R (2008) Revealing magnetic interactions from single-atom magnetization curves. Science 320:82–86

    CAS  Google Scholar 

  66. Loth S, von Bergmann K, Ternes M, Otte AF, Lutz CP, Heinrich AJ (2010) Controlling the state of quantum spins with electric currents. Nat Phys 6:340–344

    CAS  Google Scholar 

  67. Serrate D, Ferriani P, Yoshida Y, Hla SW, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5:350–353

    CAS  Google Scholar 

  68. Loth S, Etzkorn M, Lutz CP, Eigler DM, Heinrich AJ (2010) Measurement of fast electron spin relaxation times with atomic resolution. Science 329:1628–1630

    CAS  Google Scholar 

  69. Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2011) Realizing all-spin-based logic operations atom by atom. Science 332:1062–1064

    CAS  Google Scholar 

  70. Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ (2012) Bistability in atomic-scale antiferromagnets. Science 335:196–199

    CAS  Google Scholar 

  71. Khajetoorians AA, Baxevanis B, Hübner C, Schlenk T, Krause S, Wehling TO, Lounis S, Lichtenstein A, Pfannkuche D, Wiebe J, Wiesendanger R (2013) Current-driven spin dynamics of artificially constructed quantum magnets. Science 339:55–59

    CAS  Google Scholar 

  72. Kahle S, Deng Z, Malinowski N, Tonnoir C, Forment-Aliaga A, Thontasen N, Rinke G, Le D, Turkowski V, Rahman TS, Rauschenbach S, Ternes M, Kern K (2012) The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett 12:518–521

    CAS  Google Scholar 

  73. Sun K, Park K, Xie J, Luo J, Yuan H, Xiong Z, Wang J, Xue Q (2013) Direct observation of molecular orbitals in an individual single-molecule magnet Mn12 on Bi(111). ACS Nano 7:6825–6830

    CAS  Google Scholar 

  74. Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonacchi D, Caneschi A, Gatteschi D, Biagi R, del Pennino U, De Renzi V, Gurevich L, Van der Zant HSJ (2003) Direct observation of single-molecule magnets organized on gold surfaces. Angew Chem Int Ed 42:1645–1648

    CAS  Google Scholar 

  75. Clemente-León M, Coronado E, Forment-Aliaga A, Romero FM (2003) Organized assemblies of magnetic clusters. C R Chimie 6:683–688

    Google Scholar 

  76. Domingo N, Bellido E, Ruiz-Molina D (2012) Advances on structuring, integration and magnetic characterization of molecular nanomagnets on surfaces and devices. Chem Soc Rev 41:258–302

    CAS  Google Scholar 

  77. Gómez-Segura J, Veciana J, Ruiz-Molina D (2007) Advances on the nanostructuration of magnetic molecules on surfaces: the case of single-molecule magnets (SMM). Chem Commun 3699–3707

    Google Scholar 

  78. Voss S, Burgert M, Fonin M, Groth U, Rüdiger U (2008) A comparative study on the deposition of Mn12 single molecule magnets on the Au(111) surface. Dalton Trans 499–505

    Google Scholar 

  79. Gatteschi D, Cornia A, Mannini M, Sessoli R (2009) Organizing and addressing magnetic molecules. Inorg Chem 48:3408–3419

    CAS  Google Scholar 

  80. Cornia A, Mannini M, Sainctavit P, Sessoli R (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40:3076–3091

    CAS  Google Scholar 

  81. Cavallini M, Facchini M, Albonetti C, Biscarini F (2008) Single molecule magnets: from thin films to nano-patterns. Phys Chem Chem Phys 10:784–793

    CAS  Google Scholar 

  82. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    CAS  Google Scholar 

  83. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    CAS  Google Scholar 

  84. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39:1805–1834

    CAS  Google Scholar 

  85. Voss S, Fonin M, Burova L, Burgert M, Dedkov YS, Preobrajenski AB, Goering E, Groth U, Kaul AR, Ruediger U (2009) Investigation of the stability of Mn12 single molecule magnets. Appl Phys A 94:491–495

    CAS  Google Scholar 

  86. Aromí G, Aubin SMJ, Bolcar MA, Christou G, Eppley HJ, Folting K, Hendrickson DN, Huffman JC, Squire RC, Tsai HL, Wang S, Wemple MW (1998) Manganese carboxylate clusters: from structural aesthetics to single-molecule magnets. Polyhedron 17:3005–3020

    Google Scholar 

  87. Fleury B, Huc V, Catala L, Jegou P, Baraton L, David C, Palacin S, Mallah T (2009) Orientation of Mn12 molecular nanomagnets in self-assembled monolayers. CrystEngComm 11:2192–2197

    CAS  Google Scholar 

  88. Fleury B, Catala L, Huc V, David C, Zhong WZ, Jegou P, Baraton L, Palacin S, Albouy PA, Mallah T (2005) A new approach to grafting a monolayer of oriented Mn12 nanomagnets on silicon. Chem Commun 2020–2022

    Google Scholar 

  89. Voss S, Fonin M, Rüdiger U, Burgert M, Groth U, Dedkov YS (2007) Electronic structure of Mn12 derivatives on the clean and functionalized Au surface. Phys Rev B 75:045102

    Google Scholar 

  90. Burgert M, Voss S, Herr S, Fonin M, Groth U, Rüdiger U (2007) Single-molecule magnets: a new approach to investigate the electronic structure of Mn12 molecules by scanning tunneling spectroscopy. J Am Chem Soc 129:14362–14366

    CAS  Google Scholar 

  91. Voss S, Fonin M, Rüdiger U, Burgert M, Groth U (2007) Experimental observation of a band gap in individual Mn12 molecules on Au(111). Appl Phys Lett 90:133104

    Google Scholar 

  92. Voss S, Herr S, Fonin M, Rüdiger U, Burgert M, Groth U (2008) Identification of linker molecules suited for deposition and study of Mn12 single molecule magnets on Au surfaces. J Appl Phys 103:07B901

    Google Scholar 

  93. Voss S, Zander O, Fonin M, Rüdiger U, Burgert M, Groth U (2008) Electronic transport properties and orientation of individual Mn12 single-molecule magnets. Phys Rev B 78:155403

    Google Scholar 

  94. Meng L, Lin BF, Yang JY, Sun Y, Dou RF, Ma LX, Xiong CM, Nie JC (2012) Detection of the intrinsic two energy gaps in individual Mn12 single molecule magnets. Chem Phys Lett 542:81–84

    CAS  Google Scholar 

  95. Petukhov K, Alam MS, Rupp H, Strömsdörfer S, Müller P, Scheurer A, Saalfrank RW, Kortus J, Postnikov A, Ruben M, Thompson LK, Lehn JM (2009) STM spectroscopy of magnetic molecules. Coord Chem Rev 253:2387–2398

    CAS  Google Scholar 

  96. Mannini M, Sainctavit P, Sessoli R, Cartier dit Moulin C, Pineider F, Arrio MA, Cornia A, Gatteschi D (2008) XAS and XMCD investigation of Mn12 monolayers on gold. Chem Eur J 14:7530–7535

    CAS  Google Scholar 

  97. Helmstedt A, Sacher MD, Gryzia A, Harder A, Brechling A, Müller N, Heinzmann U, Hoeke V, Krickemeyer E, Glaser T, Bouvron S, Fonin M (2012) Exposure of [MnIII 6CrIII]3+ single-molecule magnets to soft X-rays: the effect of the counterions on radiation stability. J Electron Spectros Relat Phenomena 184:583–588

    CAS  Google Scholar 

  98. Kuepper K, Derks C, Taubitz C, Prinz M, Joly L, Kappler JP, Postnikov A, Yang W, Kuznetsova TV, Wiedwald U, Ziemann P, Neumann M (2013) Electronic structure and soft-X-ray-induced photoreduction studies of iron-based magnetic polyoxometalates of type {(M)M5}12FeIII 30 (M=MoVI, WVI). Dalton Trans 42:7924–7935

    CAS  Google Scholar 

  99. Moro F, Biagi R, Corradini V, Evangelisti M, Gambardella A, De Renzi V, del Pennino U, Coronado E, Forment-Aliaga A, Romero FM (2012) Electronic and magnetic properties of Mn12 molecular magnets on sulfonate and carboxylic acid prefunctionalized gold surfaces. J Phys Chem C 116:14936–14942

    CAS  Google Scholar 

  100. Saywell A, Magnano G, Satterley CJ, Perdigão LMA, Britton AJ, Taleb N, del Carmen G-LM, Champness NR, O’Shea JN, Beton PH (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75

    Google Scholar 

  101. Saywell A, Britton AJ, Taleb N, del Carmen Giménez-López M, Champness NR, Beton PH, O’Shea JN (2011) Single molecule magnets on a gold surface: in situ electrospray deposition, X-ray absorption and photoemission. Nanotechnology 22:075704

    Google Scholar 

  102. Handrup K, Richards VJ, Weston M, Champness NR, O’Shea JN (2013) Single molecule magnets with protective ligand shells on gold and titanium dioxide surfaces: in situ electrospray deposition and X-ray absorption spectroscopy. J Chem Phys 139:154708

    Google Scholar 

  103. Grumbach N, Barla A, Joly L, Donnio B, Rogez G, Terazzi E, Kappler JP, Gallani JL (2010) Loss of single-molecule-magnet behavior of a Mn12-based compound assembled in a monolayer. Eur Phys J B 73:103–108

    CAS  Google Scholar 

  104. Naitabdi A, Bucher JP, Gerbier P, Rabu P, Drillon M (2005) Self-assembly and magnetism of Mn12 nanomagnets on native and functionalized gold surfaces. Adv Mater 17:1612–1616

    CAS  Google Scholar 

  105. Stöhr J (1999) Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J Magn Magn Mater 200:470–497

    Google Scholar 

  106. Thole BT, Carra P, Sette F, van der Laan G (1992) X-Ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946

    CAS  Google Scholar 

  107. Wende H (2004) Recent advances in X-ray absorption spectroscopy. Rep Prog Phys 67:2105–2181

    CAS  Google Scholar 

  108. Mannini M, Pineider F, Sainctavit P, Joly L, Fraile-Rodríguez A, Arrio MA, Cartier dit Moulin C, Wernsdorfer W, Cornia A, Gatteschi D, Sessoli R (2009) X-ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv Mater 21:167–171

    Google Scholar 

  109. Donnio B, Rivière E, Terazzi E, Voirin E, Aronica C, Chastanet G, Luneau D, Rogez G, Scheurer F, Joly L, Kappler JP, Gallani JL (2010) Magneto-optical interactions in single-molecule magnets: low-temperature photon-induced demagnetization. Solid State Sci 12:1307–1313

    CAS  Google Scholar 

  110. Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Ferromagnetism in one-dimensional monatomic metal chains. Nature 416:301–304

    CAS  Google Scholar 

  111. Bellido E, González-Monje P, Repollés A, Jenkins M, Sesé J, Drung D, Schurig T, Awaga K, Luis F, Ruiz-Molina D (2013) Mn12 single molecule magnets deposited on μ-SQUID sensors: the role of interphases and structural modifications. Nanoscale 5:12565–12573

    CAS  Google Scholar 

  112. Carbonera C, Luis F, Campo J, Sánchez-Marcos J, Camón A, Chaboy J (2010) Effect of crystalline disorder on quantum tunneling in the single-molecule magnet Mn12 benzoate. Phys Rev B 81:014427

    Google Scholar 

  113. Otero G, Evangelio E, Rogero C, Vázquez L, Gómez-Segura J, Martín-Gago JA, Ruiz-Molina D (2009) Morphological investigation of Mn12 single-molecule magnets adsorbed on Au(111). Langmuir 25:10107–10115

    CAS  Google Scholar 

  114. Aubin SMJ, Sun Z, Eppley HJ, Rumberger EM, Guzei IA, Folting K, Gantzel PK, Rheingold AL, Christou G, Hendrickson DN (2001) Single-molecule magnets: Jahn-Teller isomerism and the origin of two magnetization relaxation processes in Mn12 complexes. Inorg Chem 40:2127–2146

    CAS  Google Scholar 

  115. Domingo N, Luis F, Nakano M, Muntó M, Gómez J, Chaboy J, Ventosa N, Campo J, Veciana J, Ruiz-Molina D (2009) Particle-size dependence of magnetization relaxation in Mn12 crystals. Phys Rev B 79:214404

    Google Scholar 

  116. Artus P, Boskovic C, Yoo J, Streib WE, Brunel LC, Hendrickson DN, Christou G (2001) Single-molecule magnets: site-specific ligand abstraction from [Mn12O12(O2CR)16(H2O)4] and the preparation and properties of [Mn12O12(NO3)4(O2CCH2But)12(H2O)4]. Inorg Chem 40:4199–4210

    CAS  Google Scholar 

  117. Soler M, Artus P, Folting K, Huffman JC, Hendrickson DN, Christou G (2001) Single-molecule magnets: preparation and properties of mixed-carboxylate complexes [Mn12O12(O2CR)8(O2CR′)8(H2O)4]. Inorg Chem 40:4902–4912

    CAS  Google Scholar 

  118. Fonin M, Voss S, Herr S, de Loubens G, Kent AD, Burgert M, Groth U, Rüdiger U (2009) Influence of the ligand shell on the surface orientation of Mn12 single molecule magnets. Polyhedron 28:1977–1981

    CAS  Google Scholar 

  119. Pacchioni M, Cornia A, Fabretti AC, Zobbi L, Bonacchi D, Caneschi A, Chastanet G, Gatteschi D, Sessoli R (2004) Site-specific ligation of anthracene-1,8-dicarboxylates to an Mn12 core: a route to the controlled functionalisation of single-molecule magnets. Chem Commun 2604–2605

    Google Scholar 

  120. Inglis R, Milios CJ, Jones LF, Piligkos S, Brechin EK (2012) Twisted molecular magnets. Chem Commun 48:181–190

    CAS  Google Scholar 

  121. Moro F, Corradini V, Evangelisti M, De Renzi V, Biagi R, del Pennino U, Milios CJ, Jones LF, Brechin EK (2008) Grafting derivatives of Mn6 single-molecule magnets with high anisotropy energy barrier on Au(111) surface. J Phys Chem B 112:9729–9735

    CAS  Google Scholar 

  122. del Pennino U, Corradini V, Biagi R, De Renzi V, Moro F, Boukhvalov DW, Panaccione G, Hochstrasser M, Carbone C, Milios CJ, Brechin EK (2008) Electronic structure of a Mn6 (S=4) single molecule magnet grafted on Au(111). Phys Rev B 77:085419

    Google Scholar 

  123. Moro F, Corradini V, Evangelisti M, Biagi R, De Renzi V, del Pennino U, Cezar JC, Inglis R, Milios CJ, Brechin EK (2010) Addressing the magnetic properties of sub-monolayers of single-molecule magnets by X-ray magnetic circular dichroism. Nanoscale 2:2698–2703

    CAS  Google Scholar 

  124. Wende H (2009) How a nightmare turns into a vision. Nat Mater 8:165–166

    CAS  Google Scholar 

  125. Saalfrank RW, Bernt I, Chowdhry MM, Hampel F, Vaughan GBM (2001) Ligand-to-metal ratio controlled assembly of tetra- and hexanuclear clusters towards single-molecule magnets. Chem Eur J 7:2765–2769

    CAS  Google Scholar 

  126. Saalfrank RW, Scheurer A, Bernt I, Heinemann FW, Postnikov AV, Schünemann V, Trautwein AX, Alam MS, Rupp H, Müller P (2006) The {FeIII[FeIII(L1)2]3} star-type single-molecule magnet. Dalton Trans 2865–2874

    Google Scholar 

  127. Zhu YY, Guo X, Cui C, Wang BW, Wang ZM, Gao S (2011) An enantiopure FeIII 4 single-molecule magnet. Chem Commun 47:8049–8051

    CAS  Google Scholar 

  128. Singh R, Banerjee A, Colacio E, Rajak KK (2009) Enantiopure tetranuclear iron(III) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies. Inorg Chem 48:4753–4762

    CAS  Google Scholar 

  129. Barra AL, Caneschi A, Cornia A, Fabrizi de Biani F, Gatteschi D, Sangregorio C, Sessoli R, Sorace L (1999) Single-molecule magnet behavior of a tetranuclear iron(III) complex. The origin of slow magnetic relaxation in iron(III) clusters. J Am Chem Soc 121:5302–5310

    CAS  Google Scholar 

  130. Cornia A, Fabretti AC, Garrisi P, Mortalò C, Bonacchi D, Gatteschi D, Sessoli R, Sorace L, Wernsdorfer W, Barra AL (2004) Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. Angew Chem Int Ed 43:1136–1139

    CAS  Google Scholar 

  131. Schlegel C, Burzurí E, Luis F, Moro F, Manoli M, Brechin EK, Murrie M, van Slageren J (2010) Magnetic properties of two new Fe4 single-molecule magnets in the solid state and in frozen solution. Chem Eur J 16:10178–10185

    CAS  Google Scholar 

  132. Accorsi S, Barra AL, Caneschi A, Chastanet G, Cornia A, Fabretti AC, Gatteschi D, Mortalò C, Olivieri E, Parenti F, Rosa P, Sessoli R, Sorace L, Wernsdorfer W, Zobbi L (2006) Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S=5 ground state. J Am Chem Soc 128:4742–4755

    CAS  Google Scholar 

  133. Danieli C, Cornia A, Cecchelli C, Sessoli R, Barra AL, Ponterini G, Zanfrognini B (2009) A novel class of tetrairon(III) single-molecule magnets with graphene-binding groups. Polyhedron 28:2029–2035

    CAS  Google Scholar 

  134. Vergnani L, Barra AL, Neugebauer P, Rodriguez-Douton MJ, Sessoli R, Sorace L, Wernsdorfer W, Cornia A (2012) Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix. Chem Eur J 18:3390–3398

    CAS  Google Scholar 

  135. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197

    CAS  Google Scholar 

  136. Barra AL, Bianchi F, Caneschi A, Cornia A, Gatteschi D, Gorini L, Gregoli L, Maffini M, Parenti F, Sessoli R, Sorace L, Talarico AM (2007) New single-molecule magnets by site-specific substitution: incorporation of “alligator clips” into Fe4 complexes. Eur J Inorg Chem 4145–4152

    Google Scholar 

  137. Bogani L, Danieli C, Biavardi E, Bendiab N, Barra AL, Dalcanale E, Wernsdorfer W, Cornia A (2009) Single-molecule-magnet carbon-nanotube hybrids. Angew Chem Int Ed 48:746–750

    CAS  Google Scholar 

  138. Margheriti L, Mannini M, Sorace L, Gorini L, Gatteschi D, Caneschi A, Chiappe D, Moroni R, Buatier de Mongeot F, Cornia A, Piras FM, Magnani A, Sessoli R (2009) Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions. Small 5:1460–1466

    CAS  Google Scholar 

  139. Gregoli L, Danieli C, Barra AL, Neugebauer P, Pellegrino G, Poneti G, Sessoli R, Cornia A (2009) Magnetostructural correlations in tetrairon(III) single-molecule magnets. Chem Eur J 15:6456–6467

    CAS  Google Scholar 

  140. Prasad TK, Poneti G, Sorace L, Rodriguez-Douton MJ, Barra AL, Neugebauer P, Costantino L, Sessoli R, Cornia A (2012) Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups. Dalton Trans 41:8368–8378

    CAS  Google Scholar 

  141. Rigamonti L, Piccioli M, Malavolti L, Poggini L, Mannini M, Totti F, Cortigiani B, Magnani A, Sessoli R, Cornia A (2013) Enhanced vapor-phase processing in fluorinated Fe4 single-molecule magnets. Inorg Chem 52:5897–5905

    CAS  Google Scholar 

  142. Tancini E, Rodriguez-Douton MJ, Sorace L, Barra AL, Sessoli R, Cornia A (2010) Slow magnetic relaxation from hard-axis metal ions in tetranuclear single-molecule magnets. Chem Eur J 16:10482–10493

    CAS  Google Scholar 

  143. Mannini M, Tancini E, Sorace L, Sainctavit P, Arrio MA, Qian Y, Otero E, Chiappe D, Margheriti L, Cezar JC, Sessoli R, Cornia A (2011) Spin structure of surface-supported single-molecule magnets from isomorphous replacement and X-ray magnetic circular dichroism. Inorg Chem 50:2911–2917

    CAS  Google Scholar 

  144. Totaro P, Westrup KCM, Boulon ME, Nunes GG, Back DF, Barison A, Ciattini S, Mannini M, Sorace L, Soares JF, Cornia A, Sessoli R (2013) A new approach to the synthesis of heteronuclear propeller-like single molecule magnets. Dalton Trans 42:4416–4426

    CAS  Google Scholar 

  145. Létard I, Sainctavit P, Cartier dit Moulin C, Kappler JP, Ghigna P, Gatteschi D, Doddi B (2007) Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK. J Appl Phys 101:113920

    Google Scholar 

  146. Tancini E, Mannini M, Sainctavit P, Otero E, Sessoli R, Cornia A (2013) On-surface magnetometry: the evaluation of superexchange coupling constants in surface-wired single-molecule magnets. Chem Eur J 19:16902–16905

    CAS  Google Scholar 

  147. Arrio MA, Scuiller A, Sainctavit P, Cartier dit Moulin C, Mallah T, Verdaguer M (1999) Soft X-ray magnetic circular dichroism in paramagnetic systems: element-specific magnetization of two heptanuclear CrIIIMII 6 high-spin molecules. J Am Chem Soc 121:6414–6420

    CAS  Google Scholar 

  148. Lorusso G, Corradini V, Ghirri A, Biagi R, del Pennino U, Siloi I, Troiani F, Timco G, Winpenny REP, Affronte M (2012) Magnetic and entanglement properties of molecular Cr2nCu2 heterometallic spin rings. Phys Rev B 86:184424

    Google Scholar 

  149. Ghigna P, Campana A, Lascialfari A, Caneschi A, Gatteschi D, Tagliaferri A, Borgatti F (2001) X-ray magnetic-circular-dichroism spectra on the superparamagnetic transition-metal ion clusters Mn12 and Fe8. Phys Rev B 64:132413

    Google Scholar 

  150. Corradini V, Ghirri A, Candini A, Biagi R, del Pennino U, Dotti G, Otero E, Choueikani F, Blagg RJ, McInnes EJL, Affronte M (2013) Magnetic cooling at a single molecule level: a spectroscopic investigation of isolated molecules on a surface. Adv Mater 25:2816–2820

    CAS  Google Scholar 

  151. Corradini V, Ghirri A, Garlatti E, Biagi R, De Renzi V, del Pennino U, Bellini V, Carretta S, Santini P, Timco G, Winpenny REP, Affronte M (2012) Magnetic anisotropy of Cr7Ni spin clusters on surfaces. Adv Funct Mater 22:3706–3713

    CAS  Google Scholar 

  152. Corradini V, Moro F, Biagi R, De Renzi V, del Pennino U, Bellini V, Carretta S, Santini P, Milway VA, Timco G, Winpenny REP, Affronte M (2009) Successful grafting of isolated molecular Cr7Ni rings on Au(111) surface. Phys Rev B 79:144419

    Google Scholar 

  153. Dreiser J, Pedersen KS, Piamonteze C, Rusponi S, Salman Z, Ali ME, Schau-Magnussen M, Thuesen CA, Piligkos S, Weihe H, Mutka H, Waldmann O, Oppeneer P, Bendix J, Nolting F, Brune H (2012) Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster. Chem Sci 3:1024–1032

    CAS  Google Scholar 

  154. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421

    CAS  Google Scholar 

  155. Pineider F, Mannini M, Danieli C, Armelao L, Piras FM, Magnani A, Cornia A, Sessoli R (2010) Deposition of intact tetrairon(III) single molecule magnet monolayers on gold: an STM, XPS, and ToF-SIMS investigation. J Mater Chem 20:187–194

    CAS  Google Scholar 

  156. Ishikawa N (2007) Single molecule magnet with single lanthanide ion. Polyhedron 26:2147–2153

    CAS  Google Scholar 

  157. Gómez-Segura J, Díez-Pérez I, Ishikawa N, Nakano M, Veciana J, Ruiz-Molina D (2006) 2-D Self-assembly of the bis(phthalocyaninato)terbium(III) single-molecule magnet studied by scanning tunnelling microscopy. Chem Commun 2866–2868

    Google Scholar 

  158. Ishikawa N, Sugita M, Tanaka N, Ishikawa T, Koshihara S, Kaizu Y (2004) Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S=1/2 spin. Inorg Chem 43:5498–5500

    CAS  Google Scholar 

  159. Ganivet CR, Ballesteros B, de la Torre G, Clemente-Juan JM, Coronado E, Torres T (2013) Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem Eur J 19:1457–1465

    CAS  Google Scholar 

  160. Gimzewski JK, Stoll E, Schlittler RR (1987) Scanning tunneling microscopy of individual molecules of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf Sci 181:267–277

    CAS  Google Scholar 

  161. Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove BK, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film Field-Effect Transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131:9967–9976

    CAS  Google Scholar 

  162. Souto J, de Saja JA, Aroca R, Rodriguez ML (1993) Langmuir-Blodgett and vacuum sublimed films of terbium bisphthalocyanine. Synth Met 54:229–235

    CAS  Google Scholar 

  163. Wang X, Chen Y, Liu H, Jiang J (2006) Spectroscopic and structural characteristics of Langmuir-Blodgett films of bis[2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyaninato] rare earth complexes. Thin Solid Films 496:619–625

    CAS  Google Scholar 

  164. Stepanow S, Honolka J, Gambardella P, Vitali L, Abdurakhmanova N, Tseng TC, Rauschenbach S, Tait SL, Sessi V, Klyatskaya S, Ruben M, Kern K (2010) Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. J Am Chem Soc 132:11900–11901

    CAS  Google Scholar 

  165. Margheriti L, Chiappe D, Mannini M, Car PE, Sainctavit P, Arrio MA, Buatier de Mongeot F, Cezar JC, Piras FM, Magnani A, Otero E, Caneschi A, Sessoli R (2010) X-ray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films. Adv Mater 22:5488–5493

    CAS  Google Scholar 

  166. Fu YS, Schwöbel J, Hla SW, Dilullo A, Hoffmann G, Klyatskaya S, Ruben M, Wiesendanger R (2012) Reversible chiral switching of bis(phthalocyaninato) terbium(III) on a metal surface. Nano Lett 12:3931–3935

    CAS  Google Scholar 

  167. Lodi Rizzini A, Krull C, Balashov T, Kavich JJ, Mugarza A, Miedema PS, Thakur PK, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P (2011) Coupling single molecule magnets to ferromagnetic substrates. Phys Rev Lett 107:177205

    CAS  Google Scholar 

  168. Lodi Rizzini A, Krull C, Balashov T, Mugarza A, Nistor C, Yakhou F, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P (2012) Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers. Nano Lett 12:5703–5707

    CAS  Google Scholar 

  169. Malavolti L, Poggini L, Margheriti L, Chiappe D, Graziosi P, Cortigiani B, Lanzilotto V, Buatier de Mongeot F, Ohresser P, Otero E, Choueikani F, Sainctavit P, Bergenti I, Dediu VA, Mannini M, Sessoli R (2013) Magnetism of TbPc2 SMMs on ferromagnetic electrodes used in organic spintronics. Chem Commun 49:11506–11508

    CAS  Google Scholar 

  170. Klar D, Klyatskaya S, Candini A, Krumme B, Kummer K, Ohresser P, Corradini V, De Renzi V, Biagi R, Joly L, Kappler JP, del Pennino U, Affronte M, Wende H, Ruben M (2013) Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. Beilstein J Nanotechnol 4:320–324

    Google Scholar 

  171. Schwöbel J, Fu Y, Brede J, Dilullo A, Hoffmann G, Klyatskaya S, Ruben M, Wiesendanger R (2012) Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat Commun 3:953

    Google Scholar 

  172. Takami T, Arnold DP, Fuchs AV, Will GD, Goh R, Waclawik ER, Bell JM, Weiss PS, Sugiura K, Liu W, Jiang J (2006) Two-dimensional crystal growth and stacking of bis(phthalocyaninato) rare earth sandwich complexes at the 1-phenyloctane/graphite interface. J. Phys Chem B 110:1661–1664

    CAS  Google Scholar 

  173. Qiu X, Wang C, Yin S, Zeng Q, Xu B, Bai C (2000) Self-assembly and immobilization of metallophthalocyanines by alkyl substituents observed with scanning tunneling microscopy. J Phys Chem B 104:3570–3574

    CAS  Google Scholar 

  174. Biagi R, Fernandez-Rodriguez J, Gonidec M, Mirone A, Corradini V, Moro F, De Renzi V, del Pennino U, Cezar JC, Amabilino DB, Veciana J (2010) X-ray absorption and magnetic circular dichroism investigation of bis(phthalocyaninato)terbium single-molecule magnets deposited on graphite. Phys Rev B 82:224406

    Google Scholar 

  175. Gonidec M, Biagi R, Corradini V, Moro F, De Renzi V, del Pennino U, Summa D, Muccioli L, Zannoni C, Amabilino DB, Veciana J (2011) Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J Am Chem Soc 133:6603–6612

    CAS  Google Scholar 

  176. Glebe U, Weidner T, Baio JE, Schach D, Bruhn C, Buchholz A, Plass W, Walleck S, Glaser T, Siemeling U (2012) Self-assembled monolayers of single-molecule magnets [Tb{Pc′(SR)8}2] on gold. Chem Plus Chem 77:889–897

    CAS  Google Scholar 

  177. Kyatskaya S, Galán Mascarós JR, Bogani L, Hennrich F, Kappes M, Wernsdorfer W, Ruben M (2009) Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J Am Chem Soc 131:15143–15151

    CAS  Google Scholar 

  178. Lopes M, Candini A, Urdampilleta M, Reserbat-Plantey A, Bellini V, Klyatskaya S, Marty L, Ruben M, Affronte M, Wernsdorfer W, Bendiab N (2010) Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano 4:7531–7537

    CAS  Google Scholar 

  179. Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus MS, Zhang J, Liu Z (2010) Can graphene be used as a substrate for Raman enhancement? Nano Lett 10:553–561

    CAS  Google Scholar 

  180. Vitali L, Fabris S, Mosca Conte A, Brink S, Ruben M, Baroni S, Kern K (2008) Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett 8:3364–3368

    CAS  Google Scholar 

  181. Malavolti L, Mannini M, Car PE, Campo G, Pineider F, Sessoli R (2013) Erratic magnetic hysteresis of TbPc2 molecular nanomagnets. J Mater Chem C 1:2935–2942

    CAS  Google Scholar 

  182. Hofmann A, Salman Z, Mannini M, Amato A, Malavolti L, Morenzoni E, Prokscha T, Sessoli R, Suter A (2012) Depth-dependent spin dynamics in thin films of TbPc2 nanomagnets explored by low-energy implanted muons. ACS Nano 6:8390–8396

    CAS  Google Scholar 

  183. Perfetti M, Pineider F, Poggini L, Otero E, Mannini M, Sorace L, Sangregorio C, Cornia A, Sessoli R (2014) Grafting single molecule magnets on gold nanoparticles. Small 10:323–329

    CAS  Google Scholar 

  184. Holmberg RJ, Hutchings AJ, Habib F, Korobkov I, Scaiano JC, Murugesu M (2013) Hybrid nanomaterials: anchoring magnetic molecules on naked gold nanocrystals. Inorg Chem 52:14411–14418

    CAS  Google Scholar 

  185. Yi X, Bernot K, Pointillart F, Poneti G, Calvez G, Daiguebonne C, Guillou O, Sessoli R (2012) A luminescent and sublimable DyIII-based single-molecule magnet. Chem Eur J 18:11379–11387

    CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to many colleagues that have substantially contributed to our scientific activity over the years. We especially wish to thank Dante Gatteschi, Roberta Sessoli and Andrea Caneschi (Università degli Studi di Firenze and INSTM Research Unit of Firenze, Sesto Fiorentino, Italy) as invaluable teachers and endless sources of ideas and illuminating suggestions. Many groundbreaking experiments were only possible thanks to Wolfgang Wernsdorfer (Institut Néel-CNRS, Grenoble, France), Anne-Laure Barra (LNCMI-CNRS, Grenoble, France), Philippe Sainctavit (IMPMC, Université Pierre et Marie Curie, Paris, France) and Zaher Salman (PSI, Villigen, Switzerland). This work was financially supported by European Union through an ERANET project “NanoSci-ERA: Nanoscience in European Research Area” (SMMTRANS), by European Research Council through the Advanced Grant MolNanoMas (267746) and by Italian MIUR through PRIN (2008FZK5AC) and FIRB (RBAP117RWN, RBFR10OAI0) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cornia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornia, A., Mannini, M. (2014). Single-Molecule Magnets on Surfaces. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_150

Download citation

Publish with us

Policies and ethics