Skip to main content

A Schütte-Tait Style Cut-Elimination Proof for First-Order Gödel Logic

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2381))

Abstract

We present a Schütte-Tait style cut-elimination proof for the hypersequent calculus HIF for first-order Gödel logic. This proof allows to bound the depth of the resulting cut-free derivation by 4 ÇdÇρ(d) , where |d| is the depth of the original derivation and ρ(d) the maximal complexity of cut-formulas in it. We compare this Schütte-Tait style cut-elimination proof to a Gentzen style proof.

Research supported by EC Marie Curie fellowship HPMF-CT-1999-00301

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Avron: A constructive analysis of RM. J. Symbolic Logic, 52: 939–951, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Avron: Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence, 4: 225–248, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Avron: The Method of Hypersequents in the Proof Theory of Propositional Nonclassical Logics. In W. Hodges, M. Hyland, C. Steinhorn and J. Truss editors, Logic: from Foundations to Applications, European Logic Colloquium Oxford Science Publications. Clarendon Press. Oxford. 1–32. 1996.

    Google Scholar 

  4. M. Baaz, A. Ciabattoni, C. Fermüller: Cut-Elimination in a Sequents-of-Relations Calculus for Gödel Logic. In International Symposium on Multiple Valued Logic (ISMVL’2001), 181–186. IEEE. 2001.

    Google Scholar 

  5. M. Baaz, A. Ciabattoni, C. Fermüller: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving. In Proceedings of Logic for Programming and Automated Reasoning (LPAR’2001), LNAI 2250, 201–216. 2001.

    Google Scholar 

  6. M. Baaz, A. Ciabattoni, C. Fermüller: Sequent of Relations Calculi: a Framework for Analytic Deduction in Many-Valued Logics. In M. Fitting and E. Orlowska editors, Theory and applications of Multiple-Valued Logics. To appear.

    Google Scholar 

  7. M. Baaz, A. Leitsch: Comparing the complexity of cut-elimination methods. In Proceedings of Proof Theory in Computer Science, LNCS 2183, 49–67. 2001.

    Chapter  Google Scholar 

  8. M. Baaz, R. Zach: Hypersequents and the proof theory of intuitionistic fuzzy logic. In Proceedings of Computer Science Logic (CSL’2000), LNCS 1862, 187–201. 2000.

    Chapter  Google Scholar 

  9. M. Dummett: A Propositional Logic with Denumerable Matrix. J. of Symbolic Logic, 24: 96–107. 1959.

    MathSciNet  Google Scholar 

  10. G. Gentzen: Untersuchungen über das logische Schliessen I, II. Mathematische Zeitschrift, 39: 176–210, 405–431. 1934.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Gödel: Zum Intuitionistischen Aussagenkalkul. Ergebnisse eines mathematischen Kolloquiums, 4: 34–38. 1933.

    Google Scholar 

  12. P. Hájek: Metamathematics of Fuzzy Logic. Kluwer. 1998.

    Google Scholar 

  13. K. Schütte: Beweistheorie. Springer Verlag. 1960.

    Google Scholar 

  14. W.W. Tait: Normal derivability in classical logic. In The Sintax and Semantics of infinitary Languages, LNM 72, 204–236. 1968.

    Google Scholar 

  15. G. Takeuti: Proof Theory. North-Holland. 1987.

    Google Scholar 

  16. G. Takeuti, T. Titani: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. of Symbolic Logic, 49: 851–866. 1984.

    Article  MATH  MathSciNet  Google Scholar 

  17. A.S. Troelstra and H. Schwichtenberg: Basic Proof Theory. Cambridge University Press. 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Ciabattoni, A. (2002). A Schütte-Tait Style Cut-Elimination Proof for First-Order Gödel Logic. In: Egly, U., Fermüller, C.G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2002. Lecture Notes in Computer Science(), vol 2381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45616-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45616-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43929-5

  • Online ISBN: 978-3-540-45616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics