Skip to main content

The Duke Forest FACE Experiment: CO2 Enrichment of a Loblolly Pine Forest

  • Chapter
Managed Ecosystems and CO2

11.5 Conclusions

Free-air CO2 enrichment (FACE) in the Duke Forest provides a whole-ecosystem arena in which to examine the response of a temperate coniferous forest to high, future levels of atmospheric CO2. At the end of 8 years of the experiment, we conclude:

  • Photosynthetic rates by canopy foliage have increased up to 50 % over controls.

  • Basal area increment has been stimulated 13–27 % versus that in control plots, with interannual variation due to variations in temperature and moisture during the growing season.

  • Biomass increment has increased by 108 g C m-2 year-1 (27 %) over that in control plots.

  • Growth and respiration of roots are higher in CO2 fumigated plots.

  • Litterfall is greater in high CO2 plots and forest floor accumulation has increased.

  • There has been little or no change in the total amount of soil organic matter as a result of CO2 fumigations.

  • While the stimulation of growth by high CO2 persists after 8 years of fumigation, there is evidence of nitrogen limitation in the fumigated plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AS, Schlesinger WH (2004) Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol Biochem 36:581–589

    Article  CAS  Google Scholar 

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–162

    Article  CAS  Google Scholar 

  • Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separating of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63:1429–1435

    Article  CAS  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva, L, Andrews JA, Schlesinger WH (2005). Longterm effects of free air CO2 enrichment (FACE on soil respiration. Biogeochemistry (in press)

    Google Scholar 

  • Bryan JA, Beryln GP, Gordon JC (1996) Toward a new concept of the evolution of nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North American trees, vol 2. Hardwoods. US Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Caspersen JP, Pacala, SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land-use history to carbon accumulation in U.S. forests. Science 290:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Christensen NL, Peet RK (1981) Secondary forest succession on the North Carolina piedmont. In: West DC, Shugart HH, Botkin DB (eds) Forest succession: concepts and applications. Springer, Berlin Heidelberg New York, pp 230–245

    Google Scholar 

  • Comins HN, McMurtrie RE (1993) Long-term response of nutrient-limited forests to CO2 enrichment: equilibrium behavior of a plant-soil model. Ecol Appl 3:666–681

    Google Scholar 

  • Delcourt HF, Harris WF. (1980) Carbon budget of the southeastern U.S. biota: analysis of historical change in trend from source to sink. Science 210:321–323

    CAS  PubMed  Google Scholar 

  • DeLucia EH, Thomas RB (2000) Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia 122:11–19

    Article  Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem under experimental CO2 enrichment. Science 284:1177–1179

    Article  PubMed  CAS  Google Scholar 

  • DeLucia EH, George K, Hamilton JG (2002) Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiology 22:1003–1010

    PubMed  CAS  Google Scholar 

  • Ellsworth DS (1999) CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–472

    Article  Google Scholar 

  • Ellsworth DS, Klimas C (2005) Photosynthetic-temperature responses and seasonal photosynthetic enhancement in an evergreen forest during three years of CO2 enrichment. Tree Physiol (in press)

    Google Scholar 

  • Ellsworth DS, Oren R, Huang C, Phillips N, Hendrey GR (1995) Leaf and canopy response to elevated CO2 in a pine forests under free-air CO2 enrichment. Oecologia 104:139–146

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Finzi AC, Schlesinger WH (2003) Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems 6:444–456

    Article  CAS  Google Scholar 

  • Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82:470–484

    Article  Google Scholar 

  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Finzi AC, DeLucia EH, Schlesinger WH (2004) Canopy N and P dynamics of a southeastern US pine forest under elevated CO2. Biogeochemistry 69:363–378

    Article  CAS  Google Scholar 

  • Finzi AC, DeLucia EH, Lichter J, McCarthy H, Moore D, Oren R, Pippen, JS, Schlesinger WH (2005) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology (in review)

    Google Scholar 

  • Gallardo A, Schlesinger WH (1994) Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol Biochem 26:1409–1415

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz, D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Google Scholar 

  • George K, Norby RJ, Hamilton JG, DeLucia EH (2003) Fine-root respirationin a loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522

    Article  Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Article  Google Scholar 

  • Harlow WM, Harrar ES, Hardin JW, White FM (1991) Textbook of dendrology, 7th edn. McGraw-Hill, New York.

    Google Scholar 

  • Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biol 5:293–309

    Article  Google Scholar 

  • Herrick JD, Maherali H, Thomas RB (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol 162:387–396

    Article  Google Scholar 

  • Hofmockel KS, Schlesinger WH (2005) Water limitations to asymbiotic N fixation in a temperate pine plantation. (in preparation)

    Google Scholar 

  • Hoosbeck MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, De Angelis P, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Global Biogeochem Cycles 18, doi:10.1029/2003 GB002127.

    Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390

    CAS  Google Scholar 

  • Idso SB, Kimball BA, Allen SG (1991) CO2 enrichment of sour orange trees: two and a half years into a long-term experiment. Plant Cell Environ 14:351–353

    Article  Google Scholar 

  • IPCC (2001) Working group one, third assessment report. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the U.S. carbon deficit. Proc Natl Acad Sci USA 101:15827–15829

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW, Todd DE, Tolbert VR (2003) Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Sci Soc Am J 67:1594–1601

    Article  CAS  Google Scholar 

  • LaDeau SL (2005) The reproductive ecology of Pinus taeda growing in elevated CO2. PhD thesis, Duke University, Durham, N.C.

    Google Scholar 

  • Lichter J, Barron SH, Bevacqua CE, Finzi AC, Irving KF, Roberts MT, Stemmler EA, Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86: 1835–1847

    Google Scholar 

  • Luo Y, White L, Canadell JG, DeLucia EH, Ellsworth DS, Finzi AC, Lichter J, Schlesinger WH (2003) Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochem Cycles 17, doi:10.1029/2002 GB001923

    Google Scholar 

  • Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol 6:967–979

    Article  Google Scholar 

  • Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil c sequestration potential. Science 302:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Mohan JE, Ziska LH, Thomas RB, Sicher RC, George K, Clark JS, Schlesinger WH (2005) Poison ivy grows larger and more poisonous at elevated atmospheric CO2. (in preparation)

    Google Scholar 

  • Moore DJ, Aref S, Ho RM, Pippen JS, Hamilton J, DeLucia EH (2005) Inter-annual variation in the response of Pinus taeda tree growth to long term Free Air Carbon Dioxide Enrichment (FACE). Global Change Biol (in review)

    Google Scholar 

  • Myers DA, Thomas RB,. DeLucia EH (1999) Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant Cell Environ 22:473–481

    Article  Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TT, Weltzin JF, Hansen RA,. Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266

    Google Scholar 

  • Oosting HJ (1942) An ecological analysis of the plant communities of Piedmont, North Carolina. Am Midl Nat 28:1–126

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey GR, McNulty SG, Katul G (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Peet RK, Christensen NL (1980) Succession: a population process. Vegetatio 43:131–140

    Article  Google Scholar 

  • Pritchard SG, Rogers HH, Davis MA, Van Santan E, Prior SA, Schlesinger WH (2001) The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Global Change Biol 7:829–837

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91

    Article  PubMed  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58

    Article  CAS  Google Scholar 

  • Schäfer KVR, Oren R, Lai, C-T, Katul GG (2002) Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global Change Biol 8:895–911

    Article  Google Scholar 

  • Schäfer KVR, Oren R, Ellsworth DS, Lai C-T, Herrick JD, Finzi AC, Richter DD, Katul GG (2003) Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biol 9:1378–1400

    Article  Google Scholar 

  • Schiffman PM, Johnson WC (1989) Phytomass and detrital carbon storage during forest regrowth in the southeastern United States piedmont. Can J For Res 19:69–78

    Google Scholar 

  • Schimel DS, Melillo JM, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running SW, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    Article  PubMed  CAS  Google Scholar 

  • Springer CJ, DeLucia EH, Thomas RB (2005) Relationship between net photosynthesis and foliar nitrogen concentration in a loblolly pine forest ecosystem grown with elevated atmospheric carbon dioxide. Tree Physiol (in press)

    Google Scholar 

  • Tans PP Fung IY. Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    CAS  PubMed  Google Scholar 

  • Thomas RB, Lewis JD, Strain BR (1994) Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda) seedlings grown in elevated atmospheric CO2. Tree Physiol 14:947–960

    PubMed  Google Scholar 

  • Tissue DT, Thomas RB, Strain BR (1996) Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO2 for 19 months in the field. Tree Physiol 16:49–59

    PubMed  Google Scholar 

  • Tissue DT, Thomas RB, Strain BR (1997) Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda L.: a four-year experiment in the field. Plant Cell Environ 20:1123–1134

    Article  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, San Diego

    Google Scholar 

  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH (2003) Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecol Appl 13:1508–1514

    Google Scholar 

  • Zhang S, Allen HL (1996) Foliar nutrient dynamics of 11-year-old loblolly pine (Pinus taeda) following nitrogen fertilization. Can J For Res 26:1426–1439

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlesinger, W.H. et al. (2006). The Duke Forest FACE Experiment: CO2 Enrichment of a Loblolly Pine Forest. In: Nösberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (eds) Managed Ecosystems and CO2 . Ecological Studies, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31237-4_11

Download citation

Publish with us

Policies and ethics