Skip to main content

Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

In this article, we will first highlight a method proposed by Hlawka and Mück to generate low-discrepancy sequences with an arbitrary distribution H and discuss its shortcomings. As an alternative, we propose an interpolated inversion method that is also shown to generate H-distributed low-discrepancy sequences, in an effort of order O(N log N).

Finally, we will address the issue of integrating functions with a singularity on the boundaries. Sobol’ and Owen proved convergence theorems and orders for the uniform distribution, which we will extend to general distributions. Convergence orders will be proved under certain origin- or corner-avoidance conditions, as well as growth conditions on the integrand and the density. Our results prove that also non-uniform quasi-Monte Carlo methods can be well applied to integrands with a polynomial singularity at the integration boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chelson. Quasi-Random Techniques for Monte Carlo Methods. PhD. Dissertation, The Claremont Graduate School, 1976.

    Google Scholar 

  2. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.

    Google Scholar 

  3. M. Drmota and R. F. Tichy. Sequences, Discrepancies and Applications, volume 1651 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  4. J. Hartinger, R. Kainhofer, and R. Tichy. Quasi-Monte Carlo algorithms for unbounded, weighted integration problems. Journal of Complexity, 20(5):654–668, 2004.

    Article  MathSciNet  Google Scholar 

  5. J. Hartinger, R. Kainhofer, and V. Ziegler. On the corner avoidance properties of various low-discrepancy sequences. Submitted, 2005.

    Google Scholar 

  6. E. Hlawka. Gleichverteilung und Simulation. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 206:183–216, 1997.

    MATH  MathSciNet  Google Scholar 

  7. E. Hlawka and R. Mück. A transformation of equidistributed sequences. In Applications of Number Theory to Numerical Analysis, pages 371–388. Academic Press, New York, 1972.

    Google Scholar 

  8. E. Hlawka and R. Mück. Über eine Transformation von gleichverteilten Folgen. II. Computing, 9:127–138, 1972.

    Article  Google Scholar 

  9. D. E. Knuth. The Art of Computer Programming. Volume 3. Sorting and Searching. Addison-Wesley, Reading, Massachusetts, 1973.

    Google Scholar 

  10. T. Kollig and A. Keller. Efficient multidimensional sampling. Computer Graphics Forum, 21(3):557–563, 2002.

    Article  Google Scholar 

  11. W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo integration. J. Comput. Phys., 122(2):218–230, 1995.

    Article  MathSciNet  Google Scholar 

  12. R. B. Nelsen. An Introduction to Copulas, volume 139 of Lecture Notes in Statistics. Springer-Verlag, New York, 1999.

    Google Scholar 

  13. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM Conf. Ser. Appl. Math. SIAM, Philadelphia, 1992.

    Google Scholar 

  14. A. B. Owen. Multidimensional variation for Quasi-Monte Carlo. In J. Fan and G. Li, editors, International Conference on Statistics in Honour of Professor Kai-Tai Fang’s 65th Birthday, 2005.

    Google Scholar 

  15. A. B. Owen. Halton sequences avoid the origin. SIAM Review, 48, 2006. To appear.

    Google Scholar 

  16. S. H. Paskov and J. Traub. Faster valuation of financial derivatives. Journal of Portfolio Management, pages 113–120, 1995.

    Google Scholar 

  17. I. M. Sobol’. Calculation of improper integrals using uniformly distributed sequences. Soviet Math. Dokl., 14(3):734–738, 1973.

    Google Scholar 

  18. X. Wang. Improving the rejection sampling method in Quasi-Monte Carlo methods. J. Comput. Appl. Math., 114(2):231–246, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartinger, J., Kainhofer, R. (2006). Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_11

Download citation

Publish with us

Policies and ethics