Skip to main content

Summary

An algorithm for quality Delaunay meshing of 2D domains with curved boundaries is presented. The algorithm uses Ruppert’s “corner lopping” heuristic [MR96b:65137]. In addition to admitting a simple termination proof, the algorithm can accept curved input without any bound on the tangent angle between adjoining curves. In the limit case, where all curves are straight line segments, the algorithm returns a mesh with a minimum angle of arcsin (\({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\sqrt 2 \)), except “near” input corners. Some loss of output quality is experienced with the use of curved input, but this loss is diminished for smaller input curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruppert J. “A Delaunay refinement algorithm for quality 2-dimensional mesh generation.” J. Algorithms, vol. 18, no. 3, 548–585, 1995.Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)(Austin, TX, 1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pav S.E. Delaunay Refinement Algorithms. Ph.D. thesis, Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 2003. URL http://www.math.cmu.edu/\~{}nw0z/publications/phdtheses/pav/p%avabs

    Google Scholar 

  3. Shewchuk J.R. Delaunay Refinement Mesh Generation. Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1997. Available as Technical Report CMU-CS-97-137

    Google Scholar 

  4. Miller G.L., Pav S.E., Walkington N.J. “When and Why Delaunay Refinement Algorithms Work.” Internat. J. Comput. Geom. Appl., vol. 15,no. 1, 25–54, 2005. Special Issue: Selected Papers from the 12th International Meshing Roundtable, 2003

    Article  MathSciNet  Google Scholar 

  5. Boivin C., Ollivier-Gooch C.F. “Guaranteed-Quality Triangular Mesh Generation For Domains with Curved Boundaries.” Internat. J. Numer. Methods Eng., vol. 55, no. 10, 1185–1213, 2002

    Article  Google Scholar 

  6. Miller G.L., Pav S.E., Walkington N.J. “Fully Incremental 3D Delaunay Mesh Generation.” Proceedings of the 11th International Meshing Roundtable, pp. 75–86. Sandia National Laboratory, September 2002

    Google Scholar 

  7. Murphy M., Mount D.M., Gable C.W. “A point-placement strategy for conforming Delaunay tetrahedralization.” Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pp. 67–74. Society for Industrial and Applied Mathematics, 2000

    Google Scholar 

  8. Cohen-Steiner D., de Verdiere E.C., Yvinec M. “Conforming Delaunay Triangulations in 3D.” CS 4345, INRIA, 2001

    Google Scholar 

  9. Cheng S.W., Dey T.K., Ramos E.A., Ray T. “Quality meshing for polyhedra with small angles.” SCG’ 04: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 290–299. ACM Press, 2004

    Google Scholar 

  10. Pav S.E., Walkington N.J. “Robust Three Dimensional Delaunay Refinement.” Proceedings of the 13th International Meshing Roundtable, pp.145–156. Sandia National Laboratory, September 2004

    Google Scholar 

  11. Babušska I., Aziz A.K. “On the angle condition in the finite element method.” SIAM J. Numer. Anal., vol. 13, no. 2, 214–226, 1976

    Article  MathSciNet  Google Scholar 

  12. Ciarlet P.G. The Finite Element Method for Elliptic Problems. North-Holland, 1978

    Google Scholar 

  13. Amenta N., Choi S., Kolluri R.K. “The power crust.” SMA’ 01: Proceedings of the sixth ACM symposium on Solid modeling and applications,pp. 249–266. ACM Press, New York, NY, USA, 2001

    Google Scholar 

  14. Fabri A. “CGAL-The Computational Geometry Algorithm Library.”Proceedings of the 10th International Meshing Roundtable, pp. 137–142. Sandia National Laboratory, October 2001

    Google Scholar 

  15. Cheng S.W., Poon S.H. “Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio.” Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pp.295–304. ACM, New York, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pav, S.E., Walkington, N.J. (2005). Delaunay Refinement by Corner Lopping. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics