Skip to main content

P Systems, a New Computational Modelling Tool for Systems Biology

  • Conference paper
Transactions on Computational Systems Biology VI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4220))

Abstract

In this paper we present P systems as a reliable computational modelling tool for Systems Biology that takes into account the discrete character of the quantity of components of biological systems, the inherently randomness in biological phenomena and the key role played by membranes in the functioning of living cells. We will introduce two different strategies for the evolution of P systems, namely, Multi-compartmental Gillespie’s Algorithm based on the well known Gillespie’s Algorithm but running on more than one compartment; and Deterministic Waiting Times Algorithm, an exact deterministic method. In order to illustrate these two strategies we have modelled two biological systems: the EGFR Signalling Cascade and the Quorum Sensing System in the bacterium Vibrio Fischeri. Our simulations results show that for the former system a deterministic approach is valid whereas for the latter a stochastic approach like Multi-compartmental Gillespie’s Algorithm is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sethi, R., Ulmann, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)

    Google Scholar 

  2. Ardelean, I., Cavaliere, M.: Playing with a Probabilistic P Simulator: Mathematical and Biological Problems. In: Cavaliere, M., Martin-Vide, C., Păun, G. (eds.) Brainstorming Week on Membrane Computing, Tarragona, February 5-11 (2003); Tech. Rep. 26/03, Universitat Rovira i Virgili, Tarragona, Spain, pp. 37–45

    Google Scholar 

  3. Bernardini, F., Gheorghe, M., Muniyandi, R.C., Krasnogor, N., Pérez-Jiménez, M.J., Romero-Campero, F.J.: On P Systems as a Modelling Tool for Biological Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 114–133. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bernardini, F., Manca, V.: P Systems with Boundary Rules. In: [20], pp. 107–118 (2003)

    Google Scholar 

  5. Besozzi, D.: Computational and Modelling Power of P systems, Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy (2004)

    Google Scholar 

  6. Bianco, L., Fontana, F., Franco, G., Manca, V.: P Systems for Biological Dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 81–126. Springer, Heidelberg (2005)

    Google Scholar 

  7. Bianco, L., Fontana, F., Manca, V.: P Systems and the Modelling of Biochemical Oscillation. In: Pre-Proceedings of WMC6 - Vienna 2005, pp. 214–225 (2005)

    Google Scholar 

  8. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. Journal of Physical Chemistry 104(25), 1876–1889 (2000)

    Google Scholar 

  9. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  10. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  11. Gillespie, D.T.: Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems. Journal of Chemical Physics 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  12. Gillespie, D.T.: Improved Leap-size Selection for Accelerated Stochastic Simulation. Journal of Chemical Physics 119(16), 8229–8234 (2003)

    Article  Google Scholar 

  13. Karwowski, R., Prusinkiewicz, P.: Design and Implementation of the L+C Modelling Language. Electronics Notes in Theoretical Computer Science 82(2), 1–19 (2003)

    Google Scholar 

  14. Meng, T.C., Somani, S., Dhar, P.: Modelling and Simulation of Biological Systems with Stochasticity. In: Silico Biology, vol. 4, p. 0024 (2004)

    Google Scholar 

  15. Milner, R.: Communicating and Mobile System: The π-Calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  16. Moehren, G., et al.: Temperature Dependence of the Epidermal Growth Factor Receptor Signaling Network Can Be Accounted for by a Kinetic Model. Biochemistry 41, 306–320 (2002)

    Article  Google Scholar 

  17. Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20(3), 295–305 (2002)

    Article  MATH  Google Scholar 

  18. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): WMC 2002. LNCS, vol. 2597. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  21. Philips, A., Cardelli., L.: A Correct Abstract Machine for the Stochastic Pi-calculus. Electronical Notes in Theoretical Computer Science (to appear, 2004)

    Google Scholar 

  22. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schoeberl, B., et al.: Computational Modeling of the Dynamics of the MAP Kinase Cascade Activated by Surface and Internalized EGF Receptors. Nature Biotech. 20, 370–375 (2002)

    Article  Google Scholar 

  24. Stundzia, A.B., Lumsden, C.J.: Stochastic Simulation of Coupled Reaction-Diffusion Processes. Journal of Computational Physics 127, 196–207 (1996)

    Article  MATH  Google Scholar 

  25. Nottingham Quorum Sensing Web Site, http://www.nottingham.ac.uk/quorum/

  26. ISI Web Site (2003) html, http://esi-topics.com/erf/october

  27. Scilab Web Pages: http://scilabsoft.inria.fr

  28. The P Systems Web Page: http://psystems.disco.unimib.it

  29. The Stochastic Pi-Machine: http://www.doc.ic.ac.uk/~anp/spim/

  30. SciLab Web Site, http://scilabsoft.inria.fr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006). P Systems, a New Computational Modelling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds) Transactions on Computational Systems Biology VI. Lecture Notes in Computer Science(), vol 4220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880646_8

Download citation

  • DOI: https://doi.org/10.1007/11880646_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45779-4

  • Online ISBN: 978-3-540-46236-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics