Skip to main content

Computing Refactorings of Behavior Models

  • Conference paper
Model Driven Engineering Languages and Systems (MODELS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3713))

Abstract

For given behavior models expressed in statechart-like formalisms, we show how to compute semantically equivalent but structurally different models. These refactorings are defined by user-provided logical predicates that partition the system’s state space and that characterize coherent parts—modes or control states—of the behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison-Wesley, Reading (1999)

    Google Scholar 

  2. Mens, T., Demeyer, S., Du Bois, B., Stenten, H., Van Gorp, P.: Refactoring: Current Research and Future Trends. In: Proc. ETAPS 2003 Workshop on Language Descriptions, Tools and Applications (2003)

    Google Scholar 

  3. Huber, F., Schätz, B., Einert, G.: Consistent Graphical Specification of Distributed Systems. In: Proc. Formal Methods Europe, pp. 122–141 (1997)

    Google Scholar 

  4. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Zölch, R., Sostawa, B., Stauner, T.: One evaluation of model-based testing and its automation. In: Proc. 27th Intl. Conf. on Software Engineering, pp. 392–401 (2005)

    Google Scholar 

  5. Philipps, J., Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S., Scholl, K.: Model-based test case generation for smart cards. In: Proc. 8th Intl. Workshop on Formal Methods for Industrial Critical Systems, pp. 168–192 (2003)

    Google Scholar 

  6. Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S.: Model Based Testing for Real—The Inhouse Card Case Study. J. STTT 5, 140–157 (2004)

    Google Scholar 

  7. Lamport, L.: TLA in Pictures. IEEE TSE 21, 768–775 (1995)

    Google Scholar 

  8. Heninger, K.: Specifying Software Requirements for Complex Systems: New Techniques and Their Application. IEEE TSE SE-6, 2–13 (1980)

    Google Scholar 

  9. Parnas, D., Madey, J.: Functional Documents for Computer Systems. Science of Computer Programming 1, 41–61 (1995)

    Article  Google Scholar 

  10. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of Requirements Specifications. ACM Trans. on SW Eng. and Meth. 5, 231–261 (1996)

    Article  Google Scholar 

  11. Parnas, D., Peters, D.: An Easily Extensible Toolset for Tabular Mathematical Expressions. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 345–359. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Shen, H., Zucker, J., Parnas, D.: Table transformation tools: Why and how. In: Proc. 11th Annual Conf. on Computer Assurance, pp. 3–11 (1996)

    Google Scholar 

  13. Parnas, D.: Tabular Representations of Relations. Technical Report CRL-260, Telecommunications Research Institute of Ontario (1992)

    Google Scholar 

  14. Breitling, M., Philipps, J.: Step by step to histories. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 11–25. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Broy, M., Stølen, K.: Specification and Development of Interactive Systems – Focus on Streams, Interfaces, and Refinement. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  16. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: Proc. 6th annual ACM symp. on principles of distr. computing, pp. 137–151 (1987)

    Google Scholar 

  17. Philipps, J., Rumpe, B.: Refinement of information flow architectures. In: Proc. ICFEM 1997 (1997)

    Google Scholar 

  18. Philipps, J., Rumpe, B.: Refinement of pipe and filter architectures. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 96–115. Springer, Heidelberg (1999)

    Google Scholar 

  19. Hanus, M.: Functional Logic Language Curry. Language Hompage: (2005), http://www.informatik.uni-kiel.de/~mh/curry/

  20. Hanus, M.: The integration of functions into logic programming: From theory to practice. J. Logic Programming 19(20), 583–628 (1994)

    Article  MathSciNet  Google Scholar 

  21. MOST Cooperation: MOST Specification, Rev. 2.2 (2002), http://www.mostnet.de/downloads/Specifications/

  22. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.M.: Refactoring UML models. In: Proc. 4th Intl. Conf. on the Unified Modeling Language, pp. 134–148 (2001)

    Google Scholar 

  23. Cheng, Y.P.: Refactoring design models for inductive verification. In: Proc. Intl. Symp. on Software Testing and Analysis, pp. 164–168 (2002)

    Google Scholar 

  24. van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-Consistent UML Refactorings. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 144–158. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models. In: Proc. 7th Intl. Conf. on the Unified Modeling Language, pp. 173–187 (2004)

    Google Scholar 

  26. Prowell, S., Poore, J.: Foundations of Sequence-Based Software Specification. IEEE TSE 29, 1–13 (2003)

    Google Scholar 

  27. Janicki, R., Sekerinski, E.: Foundations of the Trace Assertion Method of Module Interface Specification. IEEE TSE 27, 577–598 (2001)

    Google Scholar 

  28. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 397–446. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  29. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Manna et al., Z.: STeP: the Stanford Temporal Prover. Technical Report STANCS- TR-94-1518, Dept. of Computer Science, Stanford University (1994)

    Google Scholar 

  31. Jeffords, R., Heitmeyer, C.: Automatic Generation of State Invariants from Req. Specifications. In: Proc. 6th Intl. Symp. on Foundations of SW Engineering (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pretschner, A., Prenninger, W. (2005). Computing Refactorings of Behavior Models. In: Briand, L., Williams, C. (eds) Model Driven Engineering Languages and Systems. MODELS 2005. Lecture Notes in Computer Science, vol 3713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557432_10

Download citation

  • DOI: https://doi.org/10.1007/11557432_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29010-0

  • Online ISBN: 978-3-540-32057-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics