Skip to main content

Tracking the Best of Many Experts

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

An algorithm is presented for online prediction that allows to track the best expert efficiently even if the number of experts is exponentially large, provided that the set of experts has a certain structure allowing efficient implementations of the exponentially weighted average predictor. As an example we work out the case where each expert is represented by a path in a directed graph and the loss of each expert is the sum of the weights over the edges in the path.

This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the NATO Science Fellowship of Canada, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, Spanish Ministry of Science and Technology and FEDER, grant BMF2003-03324, and by the PASCAL Network of Excellence under EC grant no. 506778.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, P., Warmuth, M.K.: Tracking the best disjunction. Machine Learning 32(2), 127–150 (1998)

    Article  MATH  Google Scholar 

  2. Blackwell, D.: An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics 6, 1–8 (1956)

    MATH  MathSciNet  Google Scholar 

  3. Bousquet, O., Warmuth, M.K.: Tracking a small set of experts by mixing past posteriors. Journal of Machine Learning Research 3, 363–396 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R., Warmuth, M.K.: How to use expert advice. Journal of the ACM 44(3), 427–485 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schapire, R.E., Helmbold, D.P.: Predicting nearly as well as the best pruning of a decision tree. Machine Learning 27, 51–68 (1997)

    Article  Google Scholar 

  6. György, A., Linder, T., Lugosi, G.: Efficient algorithms and minimax bounds for zero-delay lossy source coding. IEEE Transactions on Signal Processing, 2337–2347 (August 2004)

    Google Scholar 

  7. Hannan, J.: Approximation to Bayes risk in repeated plays. In: Dresher, M., Tucker, A., Wolfe, P. (eds.) Contributions to the Theory of Games, vol. 3, pp. 97–139. Princeton University Press, Princeton (1957)

    Google Scholar 

  8. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning, 1–29 (1998)

    Google Scholar 

  9. Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. Journal of Machine Learning Research 1, 281–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 26–40. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108, 212–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pereira, F., Singer, Y.: An efficient extension to mixture techniques for prediction and decision trees. Machine Learning 36, 183–199 (1999)

    Article  MATH  Google Scholar 

  13. Takimoto, E., Warmuth, M.: Predicting nearly as well as the best pruning of a planar decision graph. Theoretical Computer Science 288, 217–235 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 74–89. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. Journal of Machine Learning Research 4, 773–818 (2003)

    Article  MathSciNet  Google Scholar 

  16. Vovk, V.: Aggregating strategies. In: Proceedings of the Third Annual Workshop on Computational Learning Theory, New York. Association of Computing Machinery, pp. 372–383 (1990)

    Google Scholar 

  17. Vovk, V.: Derandomizing stochastic prediction strategies. Machine Learning 35(3), 247–282 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

György, A., Linder, T., Lugosi, G. (2005). Tracking the Best of Many Experts. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_14

Download citation

  • DOI: https://doi.org/10.1007/11503415_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics