Skip to main content

Multiobjective Optimization of Space Structures under Static and Seismic Loading Conditions

  • Chapter
Evolutionary Multiobjective Optimization

Summary

This chapter presents a evolution strategies approach for multiobjective design optimization of structural problems such as space frames and multi-layered space trusses under static and seismic loading conditions. A rigorous approach and a simplified one with respect to the loading condition are implemented for finding optimal design of a structure under multiple objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fonseca, CM, and Fleming, PJ, An Overview of Evolutionary Algorithms in Multiobjective Optimization, Evolutionary Computations, 1995; 3: 1–16.

    Google Scholar 

  2. Stadler, W, Natural Structural Shapes of Shallow Arches, Journal of Applied Mechanics, 1977; 44: 291–298.

    Google Scholar 

  3. Leitmann, G, Some Problems of Scalar and Vector-valued Optimization in Linear Viscoelasticity, Journal of Optimization Theory and Applications, 1977; 23: 93–99.

    Article  Google Scholar 

  4. Stadler, W, Natural Structural Shapes (The Static Case), Quarterly Journal of Mechanics and Applied Mathematics, 1978; 31: 169–217.

    Google Scholar 

  5. Gerasimov, EN, and Repko, VN, Multi-criteria Optimization, Soviet Applied Mechanics, 1978; 14: 1179–1184.

    Article  Google Scholar 

  6. Koski, J, Truss Optimization with Vector Criterion, Publication No. 6, Tampere University of Technology, 1979.

    Google Scholar 

  7. Cohon, JL, Multi-objective Programming and Planning, New York, Academic Press, 1978.

    Google Scholar 

  8. Papadrakakis, M, Lagaros, ND, and Plevris, V, Optimum Design of Space Frames Under Seismic Loading, International Journal of Structural Stability and Dynamics, 2001; 1: 105–124.

    Article  Google Scholar 

  9. Cassis, JH, Optimum Design of Structures Subjected to Dynamic Loads, PhD Thesis, University of California, Los Angeles, 1974.

    Google Scholar 

  10. Johnson, EH, Disjoint Design Spaces in Optimization of Harmonically Excited Structures, AIAA Journal, 1976; 14: 259–261.

    Google Scholar 

  11. Eurocode 3, Design of Steel Structures, Part1.1: General Rules for Buildings, CEN, ENV 1993-1-1/1992.

    Google Scholar 

  12. Pareto, V, Cours d’economique Politique, vol. 1&2, Lausanne, Rouge, 1897.

    Google Scholar 

  13. Adali, S, Pareto Optimal Design of Beams Subjected to Support Motion, Computers and Structures, 1983; 16: 297–303.

    Article  Google Scholar 

  14. Baier, H, Structural Optimization in Industrial Environment, In H Eschenauer and N Olhoff (eds.) Optimization Methods in Structural Design, Proceedings of the Euromech-Colloquium 164, University of Siegen, Bibliographisches Institut A6, Zurich, pp. 140–145, 1983.

    Google Scholar 

  15. Diaz, A, Sensitivity Information in Multiobjective Optimization, Engineering Optimization, 1987; 12:281–297.

    Google Scholar 

  16. Hajela, P, and Shih, CJ, Multi-objective Optimum Design in Mixed Integer and Discrete Design Variable Problems, AIAA Journal, 1990; 28: 670–675.

    Google Scholar 

  17. Rozvany, GIN Structural Design via Optimality Criteria, Dordecht, Kluwer, 1989.

    Google Scholar 

  18. Goicoechea, A, Hansen DR, and Duckstein L, Multi-objective Decision Analysis with Engineering and Business Applications, New York, Wiley, 1982.

    Google Scholar 

  19. Koski, J, Bicriterion Optimum Design Method for Elastic Trusses, Acta Polytechnica Scandinavica, Mechanical engineering series No 86, Dissertation, Helsinki, 1984.

    Google Scholar 

  20. Sandgren, E, Multicriteria Design Optimization by Goal Programming, In H Adeli (ed.) Advances in Design Optimization, Chapman & Hall, pp. 225–265, 1994.

    Google Scholar 

  21. Kamal, CS, and Adeli, H, Fuzzy Discrete Multicriteria Cost Optimization of Steel Structures, Journal of Structural Engineering, 2000; 126: 1339–1347.

    Google Scholar 

  22. Schaffer, JD. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, PhD thesis, Vanderbilt University, 1984.

    Google Scholar 

  23. Fonseca, CM, and Fleming, PJ, Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, In S Forrest S (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo, California, Morgan Kaufmann, pp. 416–423, 1993.

    Google Scholar 

  24. Horn, J, Nafpliotis, N, and Goldberg, DE, A Niched Pareto Genetic Algorithm for Multiobjective Optimization, In Proceedings of the 1st IEEE Conference on Evolutionary Computation, IEEE World Congress on Evolutionary Computation, Volume 1, Piscataway, NJ, pp. 82–87, 1994.

    Google Scholar 

  25. Deb, K, and Goldberg, DE, An Investigation of Niche and Species Formation in Genetic Function Optimization, In JD Schaffer (ed.) Proceedings of the 3rd International Conference on Genetic Algorithms, San Mateo, California, Morgan Kaufmann, pp. 42–50, 1989.

    Google Scholar 

  26. Hajela, P, and Lin, CY, Genetic Search Strategies in Multicriterion Optimal Design, Structural Optimization, 1992; 4: 99–107.

    Article  Google Scholar 

  27. Zitzler, E, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD thesis, Swiss Federal Institute of Technology Zurich, Computer Engineering and Networks Laboratory, 1999.

    Google Scholar 

  28. Goldberg, DE, and Richardson, J, Genetic Algorithms with Sharing for Multimodal Function Optimization, In JJ Grefenstette (ed) Genetic Algorithms and Their Applications, Proceedings of the 2nd International Conference on Genetic Algorithms, Hillsdale, NJ, Lawrence Erlbaum, pp. 41–49, 1987.

    Google Scholar 

  29. Taylor, CA, EQSIM, A Program for Generating Spectrum Compatible Earthquake Ground Acceleration Time Histories, Reference Manual, Bristol Earthquake Engineering Data Acquisition and Processing System, December, 1989.

    Google Scholar 

  30. Rechenberg, I, Evolution Strategy: Optimization of Technical Systems According to the Principles of Biological Evolution, Stuttgart, Frommann-Holzboog, 1973.

    Google Scholar 

  31. Schwefel, HP, Numerical Optimization for Computer Models, Chi Chester, UK, Wiley & Sons, 1981.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lagaros, N.D., Papadrakakis, M., Plevris, V. (2005). Multiobjective Optimization of Space Structures under Static and Seismic Loading Conditions. In: Abraham, A., Jain, L., Goldberg, R. (eds) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-137-7_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-137-7_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-787-2

  • Online ISBN: 978-1-84628-137-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics