Skip to main content

New Advances in Force-Coupling Method: From Micro to Macro

  • Conference paper
IUTAM Symposium on Computational Approaches to Multiphase Flow

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 81))

Abstract

The force-coupling method (FCM) provides an efficient tool for computing particle motion and the flow in the surrounding fluid both in confined microflow systems and in larger scale suspensions. Here we present results for the interaction of individual particles in a shear flow showing that FCM captures reliably the changes in lift and drag forces. We note too the extension from spherical to non-spherical particles and comment on the use of FCM to analyze flow systems, bridging the gap between simulation data and macroscopic descriptions of dispersed two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.W. Pan, 2000, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow 26, 1509–1524.

    Article  Google Scholar 

  2. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, 2001, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys. 169, 363–426.

    Article  MathSciNet  Google Scholar 

  3. A.J.C. Ladd and R. Verberg, 2001, Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys. 104, 1191–1251.

    Article  MathSciNet  Google Scholar 

  4. M.R. Maxey, B.K. Patel, E.J. Chang and L.-P. Wang, 1997, Simulations of dispersed turbulent multiphase flow, Fluid Dyn. Res. 20, 143–156.

    Article  Google Scholar 

  5. M.R. Maxey and J.J. Riley, 1983, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26, 883–889.

    Article  Google Scholar 

  6. S. Dong, D. Liu, M.R. Maxey and G.E. Karniadakis, 2004, Spectral distributed lagrange multiplier method: Algorithm and benchmark test, J. Comput. Phys. 195, 695–717.

    Article  MathSciNet  Google Scholar 

  7. M.R. Maxey and B.K. Patel, 2001, Localized force representations for particles sedimenting in stokes flow, Int. J. Multiphase Flow 9, 1603–1626.

    Article  Google Scholar 

  8. S. Lomholt and M.R. Maxey, 2003, Force Coupling Method for particulate two-phase flow: Stokes flow, J. Comput. Phys. 184, 381–405.

    Article  Google Scholar 

  9. G.E. Karniadakis and S.J. Sherwin, 1999, Spectral/hp Element Methods for CFD, Oxford University Press.

    Google Scholar 

  10. S.L. Dance and M.R. Maxey, 2003, Incorporation of lubrication effects into the force-coupling model for particulate two-phase flow, J. Comput. Phys. 189, 212–238.

    Article  MathSciNet  Google Scholar 

  11. D. Liu, M.R. Maxey and G.E. Karniadakis, 2002, A fast method for particulate micro-flows, J. Microelectromech. Syst. 11, 691–702.

    Article  Google Scholar 

  12. D. Liu, 2004, Spectral Element/Force Coupling Method: Application to Colloidal Micro-Devices and Self-Assembly Structures in 3D Complex-Geometry Domains, Ph.D. Thesis, Brown University.

    Google Scholar 

  13. S. Lomholt, B. Stenum and M.R. Maxey, 2002, Experimental verification of the force coupling method for particulate flows, Int. J. Multiphase Flow 28, 225–246.

    Article  Google Scholar 

  14. D. Liu, M.R. Maxey and G.E. Karniadakis, 2004, Modeling and optimization of colloidal micro-pumps, J. Micromech. Microeng. 14, 567–575.

    Article  Google Scholar 

  15. P.G. Saffman, 1965, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22, 385–400.

    Article  Google Scholar 

  16. J.B. McLaughlin, 1991, Inertial migration of a small sphere in linear shear flows, J. Fluid Mech. 224, 261–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Maxey, M.R., Liu, D., Dong, S., Karniadakis, G.E. (2006). New Advances in Force-Coupling Method: From Micro to Macro. In: Balachandar, S., Prosperetti, A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow. Fluid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4977-3_24

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4977-3_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4976-7

  • Online ISBN: 978-1-4020-4977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics