Skip to main content

Galois coverings of the arithmetic line

  • Conference paper
  • First Online:
Number Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1240))

Abstract

This paper concerns Galois branched coverings of the line, first over the complex numbers and then over the p-adics. We construct such covers with arbitrary Galois group, and then descend these to covers defined over number fields. In particular, every finite group is shown to occur as a Galois group over . This is a consequence of a more general result that also implies that complete local domains other than fields are never Hilbertian — thus answering a question of Lang.

Supported in part by a Sloan Fellowship and NSF grant #MCS83-02068.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math., IHES No. 36 (1969), 23–58.

    Google Scholar 

  2. M. Artin, Algebraization of formal moduli: I, in Global Analysis: Papers in Honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 21–71.

    Google Scholar 

  3. S. Beckmann, Fields of definition of solvable branched coverings, Univ. of Pennsylvania, Ph.D. Thesis (1986), to appear.

    Google Scholar 

  4. G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Math. USSR Izvestija, 14 (1980), 247–256.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Coombes and D. Harbater, Hurwitz families and arithmetic Galois groups, Duke Math. J. 52 (1985), 821–839.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Fried, Fields of definition of function fields and Hurwitz families — Groups as Galois groups, Comm. Alg. 5 (1977), 17–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Fried and R. Biggers, Moduli spaces of covers and the Hurwitz monodromy group, Crelle's J. 335 (1983), 87–121.

    MathSciNet  MATH  Google Scholar 

  8. A. Grothendieck and J. Dieudonne, Eléments de Géométrie Algébrique (EGA) III, 1e partie, Publ. Math. IHES No. 11 (1961).

    Google Scholar 

  9. D. Harbater, Deformation theory and the tame fundamental group, Transactions of AMS 262 (1980), 399–415.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Harbater, Mock covers and Galois extensions, J. Alg. 91 (1984), 281–293.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hilbert, Über die Irreduzibilitat ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, Crelle's J. 110 (1892), 264–286.

    MathSciNet  Google Scholar 

  12. S. Lang, Fundamentals of Diophantine Geometry, Springer, NY (1983).

    Book  MATH  Google Scholar 

  13. H. W. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. H. Matzat, Konstruction von Zahl-und Funktionenkörpern mit vorgegebener Galoisgruppe, Crelle's J. 349 (1984), 179–220.

    MathSciNet  MATH  Google Scholar 

  15. B. H. Matzat, Über das Umkehproblem der Galoisschen Theorie, Karlsruhe (1985). Preprint.

    Google Scholar 

  16. E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Saltman, Generic Galois extensions and problems in field theory. Adv. Math. 43 (1982), 250–283.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Saltman, Noether's problem over an algebraically closed field, Invent. Math. 77 (1984), 71–84.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. Serre, Géométrie Algébrique et Géométrie Analytique, Annales de l'Institut Fourier, VI (1956), 1–42.

    Article  MATH  Google Scholar 

  20. K.-Y. Shih, On the construction of Galois extensions of function fields and number fields, Math. Ann. 207 (1974), 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148–158.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Thompson, Some finite groups which appear as Gal(L/K), where K ⊂ Q(un), J. Alg. 89 (1984), 437–499.

    Article  MATH  Google Scholar 

  23. A. Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David V. Chudnovsky Gregory V. Chudnovsky Harvey Cohn Melvyn B. Nathanson

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Harbater, D. (1987). Galois coverings of the arithmetic line. In: Chudnovsky, D.V., Chudnovsky, G.V., Cohn, H., Nathanson, M.B. (eds) Number Theory. Lecture Notes in Mathematics, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072980

Download citation

  • DOI: https://doi.org/10.1007/BFb0072980

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17669-5

  • Online ISBN: 978-3-540-47756-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics