Skip to main content

Hot Spot Conditions during Multi-Bubble Cavitation

  • Chapter
Sonochemistry and Sonoluminescence

Part of the book series: NATO ASI Series ((ASIC,volume 524))

Abstract

Together with the chemical effects of ultrasound, light is often emitted [1–5]. Such sonoluminescence provides an extremely useful spectroscopic probe of the conditions created during cavitation bubble collapse. Acoustic cavitation is the origin of both sonochemistry and sonoluminescence. The collapse of bubbles caused by cavitation produces intense local heating and high pressures, with very short lifetimes. As we will demonstrate in this chapter, in clouds of cavitating bubbles, these hot spots have equivalent temperatures of roughly 5000 K, pressures of about 1000 atmospheres, and heating and cooling rates above 1010 K/s. In single bubble cavitation, conditions may be even more extreme [6–7]. Thus, cavitation can create extraordinary physical and chemical conditions in otherwise cold liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suslick, K.S., ed. (1988) Ultrasound: Its Chemical, Physical, and Biological Effects, VCH Publishers, New York.

    Google Scholar 

  2. Suslick, K.S. (1990) Science, 247, 1439.

    Article  ADS  Google Scholar 

  3. Mason, T.J., Lorimer, J.P. (1988) Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horword, Ltd., Chichester, U.K.

    Google Scholar 

  4. Leighton, T.G. (1994) The Acoustic Bubble Academic Press, London, pp. 531–551.

    Google Scholar 

  5. Suslick, K.S.; Crum, L.A. (1997) “Sonochemistry and Sonoluminescence,” in Encyclopedia of Acoustics; Crocker, M. J., ed.; Wiley-Interscience, New York, vol. 1, ch. 26, pp. 271–282.

    Google Scholar 

  6. Crum, L.A. (1994) Physics Today, 47, 22.

    Article  Google Scholar 

  7. Putterman, S.J. (1995) Scientific American, Feb. 1995, 46.

    Google Scholar 

  8. Lord Rayleigh (1917) Philos. Mag., 34, 94.

    Article  MATH  Google Scholar 

  9. Richards, W.T. Loomis, A.L. (1927) J. Am. Chem. Soc., 49, 3086.

    Google Scholar 

  10. Flynn, H.G. (1964) “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, ed. by W.P. Mason, Academic Press, New York, Vol 113, p. 157.

    Google Scholar 

  11. Margulis, M.A. (1992) Ultrasonics 30, 152.

    Article  Google Scholar 

  12. Lepoint, T., Mullie, F. (1994) Ultrasonics Sonochem., 1, S13.

    Article  Google Scholar 

  13. Suslick, K.S.; Kemper, K.A. (1993) Ultrasonics 31, 463–465.

    Article  Google Scholar 

  14. Suslick, K.S.; Dokytcz, S.J.; Flint, E.B. Ultrasonics 1990, 28, 280–290.

    Article  Google Scholar 

  15. L.A. Crum, J. Acoust. Soc. Am. 95, 559 (1994).

    Google Scholar 

  16. B.P. Barber and S.J. Putterman, Phys. Rev. Leu. 69, 3839 (1992).

    Article  ADS  Google Scholar 

  17. Putterman, S. J.; Weninger, K.; Barber, B.P. Phys. Rev. Lett. 1997, 78, 1799–180.

    Article  ADS  Google Scholar 

  18. Suslick, K.S.; Hammerton, D.A.; Cline, Jr., R.E. (1986) J. Am. Chem. Soc. 108, 5641.

    Google Scholar 

  19. Henglein, A. (1993) Adv. Sonochem., 3, 17.

    Google Scholar 

  20. Frenzel, H. Schultes, H. (1934) Z. Phys. Chem. 27b, 421.

    Google Scholar 

  21. Matula, T.J.; Roy, R.A.; Mourad, P.D.; McNamara III W.B.; and Suslick, K.S. (1995) Phys. Rev. Lett. 75, 2602.

    Google Scholar 

  22. Cheeke, J.D.N. (1997) Can. J. Phys. 75, 77–98.

    ADS  Google Scholar 

  23. Barber, B. P.; Hiller, R.A.; Loefstedt, R.; Putterman, S.J.; Weninger, K.R. (1997) Phys. Rep. 281, 65143.

    Article  Google Scholar 

  24. Didenko, Y.T.; Pugach, S.P. (1994) Ultrasonics Sonochemistry 1, s10 – s12.

    Article  Google Scholar 

  25. Didenko, Y.T.; Nastich, D.N.; Pugach, S.P.; Polovinka, Y.A.; Kvochka, V.I. (1994) Ultrasonics 32, 7176

    Article  Google Scholar 

  26. Flint, E.B.; Suslick, K.S. (1991) J. Phys. Chem. 95, 1484.

    Google Scholar 

  27. Flint, E.B.; Suslick, K.S. (1989) J. Amer. Chem. Soc. 111, 6987.

    Google Scholar 

  28. Suslick, K.S.; Flint, E.B.; Grinstaff, M.W.; Kemper, K.A. (1993) J. Phys. Chem., 97, 3098–3099.

    Google Scholar 

  29. Flint, E.B.; Suslick, K.S. (1991) Science 253, 1397.

    Article  ADS  Google Scholar 

  30. Jeffries, J.B.; Copeland, R.A.; Flint, E.B.; Suslick, K.S. (1992) Science 256, 248.

    Article  ADS  Google Scholar 

  31. Lohse, D.; Brenner, M.P.; Dupont, T.F.; Hilgenfeldt, S.; and Johnston, B. (1997) Phys. Rev. Lett., 78, 1359–1362.

    Google Scholar 

  32. Barber, P.; Hiller, R.; Arisaka, K.; Fetterman, H. and Putterman, S.J. (1992) J. Acoust. Soc. Am. 91, 3061.

    Google Scholar 

  33. Gompf, B., Günther, R.; Nick, G.; Pecha, R.; Eisenmenger, W. (1997) Phys. Rev. Lett. 79, 1405.

    Google Scholar 

  34. Moss, W.C.; Clarke, D.B.; Young, D.A. (1997) Science 276, 1398–1401.

    Article  Google Scholar 

  35. Bernstein, L.S.; Zakin, M.S.; Flint, E.B.; Suslick, K.S. (1996) J. Phys. Chem. 100, 6612–6619

    Google Scholar 

  36. Barber, P.; Hiller, R.A; Lofstedt, R.; Putterman, S.J.; Weninger, K.R. (1994) Phys. Rev. Lett., 72, 1380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suslick, K.S., McNamara, W.B., Didenko, Y. (1999). Hot Spot Conditions during Multi-Bubble Cavitation. In: Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S. (eds) Sonochemistry and Sonoluminescence. NATO ASI Series, vol 524. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9215-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9215-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5162-2

  • Online ISBN: 978-94-015-9215-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics