Skip to main content

Tunable Promoters in Synthetic and Systems Biology

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression levels using libraries of synthetic promoters now exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATc:

anhydrotetracycline

DXP:

1-deoxy-D-xylulose-5-phosphate

EGFP:

enhanced green fluorescent protein

GFP:

green fluorescent protein

GOI:

gene of interest

gTME:

global transcription machinery engineering

GusA:

β-glucuronidase

KO:

knock-out

MAGE:

multiplex automated genome engineering

MCA:

metabolic control analysis

ORF:

open reading frame

Pfk:

phosphofructokinase

PLS-R:

partial least squares regression

PSP:

promoter strength predictive

RBS:

ribosome binding site

SOE PCR:

splicing by overlap extension PCR

SPL:

synthetic promoter library

TAL:

transcription activator-like

TALOR:

transcription activator-like orthogonal repressor

yEGFP:

yeast enhanced green fluorescent protein

References

  • Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107:4004–4009

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Andersen HW, Pedersen MB, Hammer K, Jensen PR (2001a) Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur J Biochem 268:6379–6389

    Article  PubMed  CAS  Google Scholar 

  • Andersen HW, Solem C, Hammer K, Jensen PR (2001b) Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183:3458–3467

    Article  PubMed  CAS  Google Scholar 

  • Bai Flagfeldt D, Siewers V, Huang L, Nielsen J (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26:545–551

    Article  CAS  Google Scholar 

  • Beer MA, Tavazoie S (2004) Predicting gene expression from sequence. Cell 117:185–198

    Article  PubMed  CAS  Google Scholar 

  • Blount BA, Weenink T, Ellis T (2012a) Construction of synthetic regulatory networks in yeast. FEBS Lett 586:2112–2121

    Article  Google Scholar 

  • Blount BA, Weenink T, Vasylechko S, Ellis T (2012b) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 7:e33279 1–e33279 11

    Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  PubMed  CAS  Google Scholar 

  • Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227

    Article  PubMed  CAS  Google Scholar 

  • Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503

    Article  PubMed  CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82 1–e82 11

    Article  Google Scholar 

  • Cox RS, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:1–11

    Google Scholar 

  • Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • De Mey M, Maertens J, Lequeux G, Soetaert W, Vandamme E (2007) Construction and model-based analysis of a promoter library for E. coli: An indispensable tool for metabolic engineering. BMC Biotechnol 7:1–14

    Article  Google Scholar 

  • De Mey M, Maertens J, Boogmans S, Soetaert W, Vandamme E, Cunin R, Foulquié-Moreno M (2010) Promoter knock-in: a novel rational method for the fine tuning of genes. BMC Biotechnol 10:1–9

    Article  Google Scholar 

  • DTU iGEM team (2010) Bi[o]stable switch. http://2010.igem.org/Team:DTU-Denmark. Accessed 7 Apr 2012

  • DTU iGEM team (2011) The universal tool for gene silencing. http://2011.igem.org/Team:DTU-Denmark. Accessed 7 Apr 2012

    Google Scholar 

  • Ellis T (2009) Synthesis and screening of regulatory component libraries for synthetic biology. Nat Protoc Exchange http://www.nature.com/protocolexchange/protocols/561

  • Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27:465–471

    Article  PubMed  CAS  Google Scholar 

  • Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3:109–118

    Article  CAS  Google Scholar 

  • Fischer CR, Alper H, Nevoigt E, Jensen KL, Stephanopoulos G (2006) Response to Hammer et al.: tuning genetic control—importance of thorough promoter characterization versus generating promoter diversity. Trends Biotechnol 24:55–56

    Article  PubMed  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  PubMed  CAS  Google Scholar 

  • Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457:215–218

    Article  PubMed  CAS  Google Scholar 

  • Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries-tuning of gene expression. Trends Biotechnol 24:53–55

    Article  PubMed  CAS  Google Scholar 

  • Hansen ME, Wangari R, Hansen EB, Mijakovic I, Jensen PR (2009) Engineering of Bacillus subtilis 168 for increased nisin resistance. Appl Environ Microbiol 75:6688–6695

    Article  PubMed  CAS  Google Scholar 

  • Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68

    Article  PubMed  CAS  Google Scholar 

  • Horwitz M, Loeb LA (1986) Promoters selected from random DNA sequences. Proc Natl Acad Sci U S A 83:7405–7409

    Article  PubMed  CAS  Google Scholar 

  • Horwitz M, Loeb LA (1988) DNA sequences of random origin as probes of Escherichia coli promoter architecture. J Biol Chem 263:14724–14731

    PubMed  CAS  Google Scholar 

  • Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E (1995) Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547

    PubMed  CAS  Google Scholar 

  • Jaurin B, Grundström T, Normark S (1982) Sequence elements determining ampC promoter strength in E. coli. EMBO J 1:875–881

    PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998a) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998b) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:191–195

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998c) Artificial promoter libraries for selected organisms and promoters derived from such libraries. Patent WO 98/07846 1–90

    Google Scholar 

  • Jensen K, Alper H, Fischer C, Stephanopoulos G (2006) Identifying functionally important mutations from phenotypically diverse sequence data. Appl Environ Microbiol 72:3696–3701

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen CM, Hammer K, Jensen PR, Martinussen J (2004) Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. Eur J Biochem 271:2438–2445

    Article  PubMed  Google Scholar 

  • Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460

    Article  PubMed  CAS  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  PubMed  CAS  Google Scholar 

  • Khlebnikov A, Risa Ø, Skaug T, Carrier TA, Keasling J (2000) Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol 182:7029–7034

    Article  PubMed  CAS  Google Scholar 

  • Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002a) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

    Article  PubMed  CAS  Google Scholar 

  • Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR (2002b) Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl Environ Microbiol 68:4274–4282

    Article  PubMed  CAS  Google Scholar 

  • Koebmann BJ, Andersen HW, Solem C, Jensen PR (2002c) Experimental determination of control of glycolysis in Lactococcus lactis. Antonie Van Leeuwenhoek 82:237–248

    Article  PubMed  CAS  Google Scholar 

  • Koebmann B, Solem C, Jensen PR (2005) Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J 272:2292–2303

    Article  PubMed  CAS  Google Scholar 

  • Koebmann B, Solem C, Jensen PR (2006) Control analysis of the importance of phosphor-glycerateenolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403. IEE Proc Syst Biol 153:346–349

    CAS  Google Scholar 

  • Ligr M, Siddharthan R, Cross FR, Siggia ED (2006) Gene expression from random libraries of yeast promoters. Genetics 172:2113–2122

    Article  PubMed  CAS  Google Scholar 

  • Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100:11980–11985

    Article  PubMed  CAS  Google Scholar 

  • Meynial-Salles I, Cervin MA, Soucaille P (2005) New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 71:2140–2144

    Article  PubMed  CAS  Google Scholar 

  • Miksch G, Bettenworth F, Friehs K, Flaschel E (2005a) The sequence upstream of the −10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli. Appl Microbiol Biotechnol 69:312–320

    Article  PubMed  CAS  Google Scholar 

  • Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A, Twellmann T, Nattkemper TW (2005b) Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J Biotechnol 120:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mukherji S, Van Oudenaarden A (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 10:859–871

    PubMed  CAS  Google Scholar 

  • Murphy KF, Balázsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 104:12726–12731

    Article  PubMed  CAS  Google Scholar 

  • Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Martín J, Rojo F, De Lorenzo V (1994) Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 58:268–290

    PubMed  Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Rossi JJ, Soberon X, Marumoto Y, McMahon J, Itakura K (1983) Biological expression of an Escherichia coli consensus sequence promoter and some mutant derivatives. Proc Natl Acad Sci U S A 80:3203–3207

    Article  PubMed  CAS  Google Scholar 

  • Rud I, Jensen PR, Naterstad K, Axelsson LA (2006) Synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 152:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Rud I, Solem C, Jensen PR, Axelsson L, Naterstad K (2008) Co-factor engineering in lactobacilli: effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus (L.) plantarum and L. sakei. Metab Eng 10:207–215

    Article  PubMed  CAS  Google Scholar 

  • Rytter JV, Helmark S, Solem C, Lezyk MJ, Jensen PR (manuscript in preparation) Synthetic promoter libraries for metabolic engineering of Corynebacterium glutamicum

    Google Scholar 

  • Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168–8172

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Koebmann BJ, Jensen PR (2003) Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 185:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Koebmann B, Yang F, Jensen PR (2007) The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. J Bacteriol 189:6727–6730

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Koebmann B, Jensen PR (2008a) The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Biotechnol Appl Biochem 50:35–40

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Koebmann B, Jensen PR (2008b) Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis. IET Syst Biol 2:64–72

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Petranovic D, Koebmann B, Mijakovic I, Jensen PR (2010) Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis. J Mol Microbiol Biotechnol 18:174–180

    Article  PubMed  CAS  Google Scholar 

  • Tornoe J, Kusk P, Johansen TE, Jensen PR (2002) Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 297:21–32

    Article  PubMed  CAS  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  PubMed  CAS  Google Scholar 

  • Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ruhdal Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dehli, T., Solem, C., Jensen, P.R. (2012). Tunable Promoters in Synthetic and Systems Biology. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_9

Download citation

Publish with us

Policies and ethics