Skip to main content

Evolutionary Diversification of Eukaryotic DNA Replication Machinery

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

DNA replication research to date has focused on model organisms such as the vertebrate Xenopus laevis and the yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. However, animals and fungi both belong to the Opisthokonta, one of about six eukaryotic phylogenetic ‘supergroups’, and therefore represent only a fraction of eukaryotic diversity. To explore evolutionary diversification of the eukaryotic DNA replication machinery a bioinformatic approach was used to investigate the presence or absence of yeast/animal replisome components in other eukaryotic taxa. A comparative genomic survey was undertaken of 59 DNA replication proteins in a diverse range of 36 eukaryotes from all six supergroups. Twenty-three proteins including Mcm2–7, Cdc45, RPA1, primase, some DNA polymerase subunits, RFC1–5, PCNA and Fen1 are present in all species examined. A further 20 proteins are present in all six eukaryotic supergroups, although not necessarily in every species: with the exception of RNase H2B and the fork protection complex component Timeless/Tof1, all of these are members of anciently derived paralogous families such as ORC, MCM, GINS or RPA. Together these form a set of 43 proteins that must have been present in the last common eukaryotic ancestor (LCEA). This minimal LCEA replisome is significantly more complex than the related replisome in Archaea, indicating evolutionary events including duplications of DNA replication genes in the LCEA lineage which parallel the early evolution of other complex eukaryotic cellular features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  PubMed  CAS  Google Scholar 

  • Balestrini A, Cosentino C, Errico A, Garner E, Costanzo V (2010) GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol 12:484–156

    Article  PubMed  CAS  Google Scholar 

  • Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Muller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 99:1414–1419

    Article  PubMed  CAS  Google Scholar 

  • Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70:876–887

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709

    Article  PubMed  CAS  Google Scholar 

  • Berney C, Pawlowski J (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc Biol Sci 273:1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1:343–354

    Article  CAS  Google Scholar 

  • Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, Diffley JFX (2011) Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol 21:1152–1157

    Article  PubMed  CAS  Google Scholar 

  • Bryant JA (2010) Replication of nuclear DNA. In: Luttge U, Beyschlag W, Budel B, Francis D (eds) Progress in botany, vol 71. Springer, Berlin/Heidelberg, pp 25–60

    Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2:e790

    Article  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  PubMed  Google Scholar 

  • Caro E, Gutierrez C (2007) A green GEM: intriguing analogies with animal geminin. Trends Cell Biol 17:580–585

    Article  PubMed  CAS  Google Scholar 

  • Caro E, Castellano MM, Gutierrez C (2007) A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447:213–216

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987) The kingdom Chromista: origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. BioPress, Bristol, pp 309–348

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003) The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Int J Syst Evol Microbiol 53:1741–1758

    Article  PubMed  CAS  Google Scholar 

  • Chia N, Cann I, Olsen GJ (2010) Evolution of DNA replication protein complexes in eukaryotes and archaea. PLoS One 5:e10866

    Article  PubMed  Google Scholar 

  • Chowdhury A, Liu G, Kemp M, Chen X, Katrangi N, Myers S, Ghosh M, Yao J, Gao Y, Bubulya P, Leffak M (2010) The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol 30:1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Cotton JA, McInerney JO (2010) Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc Natl Acad Sci USA 107:17252–17255

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120:2977–2985

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Poon PP, Field MC (2008) Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci USA 105:588–593

    Article  PubMed  CAS  Google Scholar 

  • Dang HQ, Li Z (2011) The Cdc45.Mcm2-7.GINS protein complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. J Biol Chem 286:32424–32435

    Article  PubMed  CAS  Google Scholar 

  • DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8:2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Forsburg SL (2011) Schizosaccharomyces pombe minichromosome maintenance-binding protein (MCM-BP) antagonizes MCM helicase. J Biol Chem 286:32918–32930

    Article  PubMed  CAS  Google Scholar 

  • Edgell DR, Doolittle WF (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger T, Tomkinson AE (2008) Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77:313–338

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  PubMed  CAS  Google Scholar 

  • Errico A, Costanzo V (2010) Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep 11:270–278

    Article  PubMed  CAS  Google Scholar 

  • Formosa T (2012) The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819:247–255

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692

    Article  PubMed  CAS  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    Article  PubMed  CAS  Google Scholar 

  • Garcia V, Furuya K, Carr AM (2005) Identification and functional analysis of TopBP1 and its homologs. DNA Repair 4:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RR, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Gozuacik D, Chami M, Lagorce D, Faivre J, Murakami Y, Poch O, Biermann E, Knippers R, Brechot C, Paterlini-Brechot P (2003) Identification and functional characterization of a new member of the human Mcm protein family: hMcm8. Nucleic Acids Res 31:570–579

    Article  PubMed  CAS  Google Scholar 

  • Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8:743–752

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Im J-S, Ki S-H, Farina A, Jung S, Hurwitz J, Lee J-K (2009) Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci USA 106:15628–15632

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, MacNeill SA (2010) The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 35:339–347

    Article  PubMed  CAS  Google Scholar 

  • Kearsey SE, Cotterill S (2003) Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol Cell 12:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li WQ, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D, Sequencing JGI (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita Y, Johnson EM, Gordon RE, Negri-Bell H, Evans MT, Coolbaugh J, Rosario-Peralta Y, Samet J, Slusser E, Birkenbach MP, Daniel DC (2008) Colocalization of MCM8 and MCM7 with proteins involved in distinct aspects of DNA replication. Microsc Res Tech 71:288–297

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2010) Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349–359

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2011) Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Rivera MC (1994) Was the nucleus the first endosymbiont? Proc Natl Acad Sci USA 91:2880–2881

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    Article  PubMed  CAS  Google Scholar 

  • Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123:660–670

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Herskowitz I (1993) Isolation of Orc6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Li J-J, Schnick J, Hayles J, MacNeill SA (2011) Purification of the fission yeast MCMMCM-BP complex and consequences of functional inactivation using temperature-sensitive mutants. FEBS Lett 585:3850–3855

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Richards TA, Aves SJ (2009) Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol 9:60

    Article  PubMed  CAS  Google Scholar 

  • Lutzmann M, Mechali M (2008) MCM9 binds Cdt1 and is required for the assembly of prereplication complexes. Mol Cell 31:190–200

    Article  PubMed  CAS  Google Scholar 

  • MacNeill SA (2011) Protein-protein interactions in the archaeal core replisome. Biochem Soc Trans 39:163–168

    Article  PubMed  CAS  Google Scholar 

  • Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328

    Article  PubMed  CAS  Google Scholar 

  • Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7:539–545

    PubMed  CAS  Google Scholar 

  • Martin W (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630–637

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Masai H (2011) RecQL4: a helicase linking formation and maintenance of a replication fork. J Biochem 149:629–631

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi H, Yamamoto MT (2003) REC, a new member of the MCM-related protein family, is required for meiotic recombination in Drosophila. Genes Genet Syst 78:363–371

    Article  PubMed  CAS  Google Scholar 

  • Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26:4843–4852

    Article  PubMed  CAS  Google Scholar 

  • McFarlane RJ, Mian S, Dalgaard JZ (2010) The many facets of the Tim-Tipin protein families’ roles in chromosome biology. Cell Cycle 9:700–705

    Article  PubMed  CAS  Google Scholar 

  • Moore K, Aves SJ (2008) Mcml0 and DNA replication in fission yeast. SEB Exp Biol Ser 59:45–69

    PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JEJ, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Frappier L, Mechali M (2011) MCM-BP regulates unloading of the MCM2-7 helicase in late S phase. Genes Dev 25:165–175

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Chantangsi C, Horak A, Leander BS, Keeling PJ (2009) Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp nov., and establishment of the Hacrobia taxon nov. PLoS One 4:e7080

    Article  PubMed  Google Scholar 

  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587

    Article  PubMed  CAS  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108:13624–13629

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154:S96–S124

    Article  PubMed  Google Scholar 

  • Philippe H (2000) Opinion: long branch attraction and protist phylogeny. Protist 151:307–316

    Article  PubMed  CAS  Google Scholar 

  • Ramesh MA, Malik SB, Logsdon JM (2005) A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15:185–191

    PubMed  CAS  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Leonard G, Soanes DM, Talbot NJ (2011) Gene transfer into the fungi. Fungal Biol Rev 25:98–110

    Article  Google Scholar 

  • Robbins JB, McKinney MC, Guzman CE, Sriratana B, Fitz-Gibbon S, Ha T, Cann IKO (2005) The euryarchaeota, nature’s medium for engineering of single-stranded DNA-binding proteins. J Biol Chem 280:15325–15339

    Article  PubMed  CAS  Google Scholar 

  • Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 104:5806–5811

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    Article  PubMed  CAS  Google Scholar 

  • Sakwe AM, Nguyen T, Athanasopoulos V, Shire K, Frappier L (2007) Identification and characterization of a novel component of the human minichromosome maintenance complex. Mol Cell Biol 27:3044–3055

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Pulido L, Diffley JFX, Ponting CP (2010) Homology explains the functional similarities of Treslin/Ticrr and Sld3. Curr Biol 20:R509–R510

    Article  PubMed  CAS  Google Scholar 

  • Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121:887–898

    Article  PubMed  CAS  Google Scholar 

  • Sansam CL, Cruz NM, Danielian PS, Amsterdam A, Lau ML, Hopkins N, Lees JA (2010) A vertebrate gene, ticrr, is an essential checkpoint and replication regulator. Genes Dev 24:183–194

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  PubMed  CAS  Google Scholar 

  • Simpson AG, Inagaki Y, Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol Biol Evol 23:615–625

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Lammens T, Boudolf V, Maes S, Yoshizumi T, De Jaeger G, Witters E, Inze D, De Veylder L (2008) The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J 27:1840–1851

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332

    Article  PubMed  CAS  Google Scholar 

  • Volkening M, Hoffmann I (2005) Involvement of human MCM8 in prereplication complex assembly by recruiting hcdc6 to chromatin. Mol Cell Biol 25:1560–1568

    Article  PubMed  CAS  Google Scholar 

  • Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194:513–525

    Article  PubMed  CAS  Google Scholar 

  • Wickstead B, Gull K, Richards TA (2010) Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol 10:110

    Article  PubMed  Google Scholar 

  • Xu Y, Lei Z, Huang H, Dui W, Liang X, Ma J, Jiao R (2009) dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One 4:e6107

    Article  PubMed  Google Scholar 

  • Yoshimochi T, Fujikane R, Kawanami M, Matsunaga F, Ishino Y (2008) The GINS complex from Pyrococcus furiosus stimulates the MCM helicase activity. J Biol Chem 283:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JFX (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Aves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aves, S.J., Liu, Y., Richards, T.A. (2012). Evolutionary Diversification of Eukaryotic DNA Replication Machinery. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_2

Download citation

Publish with us

Policies and ethics