Skip to main content

Genome-Wide Analysis of Yeast Aging

  • Chapter
  • First Online:
Aging Research in Yeast

Part of the book series: Subcellular Biochemistry ((SCBI,volume 57))

Abstract

In the past several decades the budding yeast Saccharomyces cerevisiae has emerged as a prominent model for aging research. The creation of a single-gene deletion collection covering the majority of open reading frames in the yeast genome and advances in genomic technologies have opened yeast research to genome-scale screens for a variety of phenotypes. A number of screens have been performed looking for genes that modify secondary age-associated phenotypes such as stress resistance or growth rate. More recently, moderate-throughput methods for measuring replicative life span and high-throughput methods for measuring chronological life span have allowed for the first unbiased screens aimed at directly identifying genes involved in determining yeast longevity. In this chapter we discuss large-scale life span studies performed in yeast and their implications for research related to the basic biology of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCE:

counter flow centrifugation elutriation

DR:

dietary restriction

ERC:

extrachromosomal rDNA circles

FNR:

false negative rate

FPR:

false positive rate

LL:

long-lived

LLM:

long-lived mutant

MEP:

mother enrichment program

NLL:

not long-lived

NSE:

no significant extension

OD:

optical density

ORF:

open reading frame

PKA:

protein kinase A

ROS:

reactive oxygen species

SL:

short-lived

SIR:

silent information regulator

TOR:

target of rapamycin

uORF:

upstream open reading frame

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299(5613):1751–1753

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423(6936):181–185

    Article  PubMed  CAS  Google Scholar 

  • Arsham AM, Neufeld TP (2006) Thinking globally and acting locally with TOR. Curr Opin Cell Biol 18(6):589–597

    Article  PubMed  CAS  Google Scholar 

  • Bacon JS, Davidson ED, Jones D, Taylor IF (1966) The location of chitin in the yeast cell wall. Biochem J 101(2):36C–38C

    PubMed  CAS  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279(48):49883–49888

    Article  PubMed  CAS  Google Scholar 

  • Barton AA (1950) Some aspects of cell division in saccharomyces cerevisiae. J Gen Microbiol 4(1):84–86

    PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5(4):265–277

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166(2):765–777

    Article  PubMed  CAS  Google Scholar 

  • Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11(2):255–269

    Article  PubMed  CAS  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376(6541):599–602

    Article  PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270

    Article  PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10(9):1385–1396

    Article  PubMed  Google Scholar 

  • Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175(4):521–525

    Article  PubMed  CAS  Google Scholar 

  • Carr LL, Gottschling DE (2008) Does age influence loss of heterozygosity? Exp Gerontol 43(3):123–129

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Contreras R (2007) Identifying genes that extend life span using a high-throughput screening system. Methods Mol Biol 371:237–248

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13(2):64–71

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Fabrizio P, Ge H, Longo VD, Li LM (2007a) Inference of transcription modification in long-live yeast strains from their expression profiles. BMC Genomics 8:219

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Fabrizio P, Ge H, Wei M, Longo VD, Li LM (2007b) Significant and systematic expression differentiation in long-lived yeast strains. PLoS One 2(10):e1095

    Article  PubMed  CAS  Google Scholar 

  • Conrad-Webb H, Butow RA (1995) A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae. Mol Cell Biol 15(5):2420–2428

    PubMed  CAS  Google Scholar 

  • Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275(40):31505–31513

    Article  PubMed  CAS  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3(4):e56

    Article  PubMed  CAS  Google Scholar 

  • D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269(22):15451–15459

    PubMed  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807

    Article  PubMed  CAS  Google Scholar 

  • Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA et al (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3(4):447–455

    Article  PubMed  CAS  Google Scholar 

  • DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    Article  PubMed  CAS  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG et al (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298(5602):2398–2401

    Article  PubMed  CAS  Google Scholar 

  • Egilmez NK, Chen JB, Jazwinski SM (1990) Preparation and partial characterization of old yeast cells. J Gerontol 45(1):B9–B17

    PubMed  CAS  Google Scholar 

  • Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171(1):37–42

    PubMed  CAS  Google Scholar 

  • Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12(5):1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Epstein CB, Waddle JA, Hale W t., Dave V, Thornton J, Macatee TL et al (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12(2):297–308

    PubMed  CAS  Google Scholar 

  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21(19):2410–2421

    Article  PubMed  CAS  Google Scholar 

  • Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104(26):10877–10881

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A et al (2004a) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166(7):1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K et al (2005) Sir2 blocks extreme life-span extension. Cell 123(4):655–667

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G et al (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6(7):e1001024

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB et al (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1):35–46

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2):73–81

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371:89–95

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004b) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557(1–3):136–142

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292(5515):288–290

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591

    Article  PubMed  CAS  Google Scholar 

  • Fritze CE, Verschueren K, Strich R, Easton Esposito R (1997) Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16(21):6495–6509

    Article  PubMed  CAS  Google Scholar 

  • Frohlich KU, Fussi H, Ruckenstuhl C (2007) Yeast apoptosis – from genes to pathways. Semin Cancer Biol 17(2):112–121

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh-Viner T, Beach A et al (2009) Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp Gerontol 44(9):555–571

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56(5):771–776

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164(6):803–809

    Article  PubMed  CAS  Google Scholar 

  • Gresham D, Boer VM, Caudy A, Ziv N, Brandt NJ, Storey JD et al (2011) System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae. Genetics 187(1):299–317

    Article  PubMed  CAS  Google Scholar 

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G et al (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1(1):119–128

    Article  PubMed  CAS  Google Scholar 

  • Heeren G, Rinnerthaler M, Laun P, Seyerl Pv., Kössler S, Klinger H et al (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back‐signaling via TOR1. Aging 1(7):622–636

    PubMed  CAS  Google Scholar 

  • Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299(5611):1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S et al (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164(4):501–507

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  PubMed  CAS  Google Scholar 

  • Hosiner D, Lempiainen H, Reiter W, Urban J, Loewith R, Ammerer G et al (2009) Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell 20(3):1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Moazed D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17(17):2162–2176

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2(5):345–350

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (2004) Yeast replicative life span – the mitochondrial connection. FEMS Yeast Res 5(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (2005) Yeast longevity and aging – the mitochondrial connection. Mech Ageing Dev 126(2):243–248

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24(5–6):423–436

    Article  PubMed  CAS  Google Scholar 

  • Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131(16):3897–3906

    Article  PubMed  CAS  Google Scholar 

  • Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3(6):597–599

    PubMed  Google Scholar 

  • Jia MH, Larossa RA, Lee JM, Rafalski A, Derose E, Gonye G et al (2000) Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol Genomics 3(2):83–92

    PubMed  CAS  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14(14):2135–2137

    PubMed  CAS  Google Scholar 

  • Johnston JR (1966) Reproductive capacity and mode of death of yeast cells. Antonie Van Leeuwenhoek 32(1):94–98

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18(20):2491–2505

    Article  PubMed  CAS  Google Scholar 

  • Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21(23):3061–3066

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M (2006) Longevity and aging in the budding yeast. In: Conn PM (ed) Handbook of models for human aging. Elsevier, Boston, pp 109–120

    Chapter  Google Scholar 

  • Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3(5):e84

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N et al (2005a) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1(5):e69

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2(9):E296

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2005b) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126(4):491–504

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Powers RW 3rd (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6(2):128–140

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N et al (2005c) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196

    Article  PubMed  CAS  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127(6 Pt 2):1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80(3):485–496

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M et al (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89(3):381–391

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Smith ED, Kaeberlein M (2005) The enigmatic role of Sir2 in aging. Cell 123(4):548–550

    Article  PubMed  CAS  Google Scholar 

  • Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152(1):179–190

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1(2):157–162

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Wedaman KP, O’Shea EK, Powers T (2000) Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151(4):863–878

    Article  PubMed  CAS  Google Scholar 

  • Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131(3):557–571

    Article  PubMed  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  PubMed  CAS  Google Scholar 

  • Lai CY, Jaruga E, Borghouts C, Jazwinski SM (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162(1):73–87

    PubMed  CAS  Google Scholar 

  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C et al (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309(5742):1861–1864

    Article  PubMed  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S et al (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39(5):1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J et al (2005) A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Paques F, Sylvan J, Haber JE (1999) Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol 9(14):767–770

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33(1):40–48

    Article  PubMed  CAS  Google Scholar 

  • Lesur I, Campbell JL (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell 15(3):1297–1312

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC et al (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344–348

    Article  PubMed  CAS  Google Scholar 

  • Lin SS, Manchester JK, Gordon JI (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 276(38):36000–36007

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183(2):413–422, 411SI–413SI

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51(12):3075–3079

    PubMed  CAS  Google Scholar 

  • Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100(3):776–781

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137(7):1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126(2):257–268

    Article  PubMed  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147(Pt 9):2409–2415

    PubMed  CAS  Google Scholar 

  • Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK et al (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 3(11):e3802

    Article  PubMed  CAS  Google Scholar 

  • Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17(2):158–166

    Article  PubMed  CAS  Google Scholar 

  • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97(5):621–633

    Article  PubMed  CAS  Google Scholar 

  • Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD et al (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6(4):e1000921

    Article  PubMed  CAS  Google Scholar 

  • Matsuura A, Anraku Y (1993) Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Gen Genet 238(1–2):6–16

    PubMed  CAS  Google Scholar 

  • McAinsh AD, Scott-Drew S, Murray JA, Jackson SP (1999) DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol 9(17):963–966

    Article  PubMed  CAS  Google Scholar 

  • McIntosh KB, Warner JR (2007) Yeast ribosomes: variety is the spice of life. Cell 131(3):450–451

    Article  PubMed  CAS  Google Scholar 

  • McMurray MA, Gottschling DE (2003) An age-induced switch to a hyper-recombinational state. Science 301(5641):1908–1911

    Article  PubMed  CAS  Google Scholar 

  • Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5(10):e261

    Article  PubMed  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638):1387–1391

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Hubbard A (2004) Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. Sci Aging Knowledge Environ 2004(42):re7

    Article  PubMed  Google Scholar 

  • Mills KD, Sinclair DA, Guarente L (1999) MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97(5):609–620

    Article  PubMed  CAS  Google Scholar 

  • Morck C, Pilon M (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 6:39

    Article  PubMed  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183(4677):1751–1752

    Article  PubMed  CAS  Google Scholar 

  • Muller I, Zimmermann M, Becker D, Flomer M (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12(1):47–52

    Article  PubMed  CAS  Google Scholar 

  • Murakami C, Kaeberlein M (2009) Quantifying yeast chronological life span by outgrowth of aged cells. J Vis Exp 27:e1156. doi:10.3791/1156

    Google Scholar 

  • Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63(2):113–121

    PubMed  Google Scholar 

  • Murray AW, Szostak JW (1983) Pedigree analysis of plasmid segregation in yeast. Cell 34(3):961–970

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG et al (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21(13):4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Nestelbacher R, Laun P, Vondrakova D, Pichova A, Schuller C, Breitenbach M (2000) The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 35(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  PubMed  CAS  Google Scholar 

  • Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Ie M, Vogelstein B et al (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99(25):16226–16231

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24(7):1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135(5):907–918

    Article  PubMed  CAS  Google Scholar 

  • Olsen B, Murakami CJ, Kaeberlein M (2010) YODA: software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 11:141

    Article  PubMed  CAS  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ et al (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1):111–119

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12(16):2488–2498

    Article  PubMed  CAS  Google Scholar 

  • Patil CK, Li H, Walter P (2004) Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biol 2(8):E246

    Article  PubMed  CAS  Google Scholar 

  • Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J et al (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12(6):1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Petes TD, Botstein D (1977) Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc Natl Acad Sci USA 74(11):5091–5095

    Article  PubMed  CAS  Google Scholar 

  • Philippsen P, Thomas M, Kramer RA, Davis RW (1978) Unique arrangement of coding sequences for 5 S, 58 S, 18 S and 25 S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysis. J Mol Biol 123(3):387–404

    Article  PubMed  CAS  Google Scholar 

  • Pierce MM, Maddelein ML, Roberts BT, Wickner RB (2001) A novel Rtg2p activity regulates nitrogen catabolism in yeast. Proc Natl Acad Sci USA 98(23):13213–13218

    Article  PubMed  CAS  Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127(9):733–740

    Article  PubMed  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  PubMed  CAS  Google Scholar 

  • Powers T (2007) TOR signaling and S6 kinase 1: yeast catches up. Cell Metab 6(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Powers T, Dilova I, Chen CY, Wedaman K (2004) Yeast TOR signaling: a mechanism for metabolic regulation. Curr Top Microbiol Immunol 279:39–51

    Article  PubMed  CAS  Google Scholar 

  • Que QQ, Winzeler EA (2002) Large-scale mutagenesis and functional genomics in yeast. Funct Integr Genomics 2(4–5):193–198

    Article  PubMed  CAS  Google Scholar 

  • Riesen M, Morgan A (2009) Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 8(6):624–632

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, De la Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631

    PubMed  CAS  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    Article  PubMed  CAS  Google Scholar 

  • Rustchenko EP, Sherman F (1994) Physical constitution of ribosomal genes in common strains of Saccharomyces cerevisiae. Yeast 10(9):1157–1171

    Article  PubMed  CAS  Google Scholar 

  • Scherens B, Goffeau A (2004) The uses of genome-wide yeast mutant collections. Genome Biol 5(7):229

    Article  PubMed  Google Scholar 

  • Seichertova O, Beran K, Holan Z, Pokorny V (1973) The chitin-glucan complex of Saccharomyces cerevisiae. II. Location of the complex in the encircling region of the bud sear. Folia Microbiol (Praha) 18(3):207–211

    Article  CAS  Google Scholar 

  • Seo JG, Lai CY, Miceli MV, Jazwinski SM (2007) A novel role of peroxin PEX6: suppression of aging defects in mitochondria. Aging Cell 6(3):405–413

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9):987–1002

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91(7):1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Sloot PM, Van der Donk EH, Figdor CG (1988) Computer-assisted centrifugal elutriation. II. Multiparametric statistical analysis. Comput Methods Programs Biomed 27(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Smeal T, Claus J, Kennedy B, Cole F, Guarente L (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84(4):633–642

    Article  PubMed  CAS  Google Scholar 

  • Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K et al (2008) Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9. FEMS Yeast Res 8(8):1276–1288

    Article  PubMed  CAS  Google Scholar 

  • Smith DL Jr, Li C, Matecic M, Maqani N, Bryk M, Smith JS (2009) Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell 8(6):633–642

    Article  PubMed  CAS  Google Scholar 

  • Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6(5):649–662

    Article  PubMed  CAS  Google Scholar 

  • Smith ED, Kennedy BK, Kaeberlein M (2007) Genome-wide identification of conserved longevity genes in yeast and worms. Mech Ageing Dev 128(1):106–111

    Article  PubMed  CAS  Google Scholar 

  • Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO et al (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18(4):564–570

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11(2):241–254

    Article  PubMed  CAS  Google Scholar 

  • Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790(10):1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Starkov AA (1997) “Mild” uncoupling of mitochondria. Biosci Rep 17(3):273–279

    Article  PubMed  CAS  Google Scholar 

  • Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp 28:e1209. doi:10.3791/1209

    Google Scholar 

  • Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA et al (2008) Yeast life span extension by depletion of 60 s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    Article  PubMed  CAS  Google Scholar 

  • Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I et al (2006) Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1:3

    Article  PubMed  CAS  Google Scholar 

  • ‘t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36(21):e141

    Article  PubMed  CAS  Google Scholar 

  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119(2):301–311

    Article  PubMed  CAS  Google Scholar 

  • Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25(12):4903–4913

    Article  PubMed  CAS  Google Scholar 

  • Tate JJ, Cooper TG (2003) Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism. J Biol Chem 278(38):36924–36933

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA et al (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5(6):505–514

    Article  PubMed  CAS  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26(5):663–674

    Article  PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620

    Article  PubMed  CAS  Google Scholar 

  • Vilela C, McCarthy JE (2003) Regulation of fungal gene expression via short open reading frames in the mRNA 5’untranslated region. Mol Microbiol 49(4):859–867

    Article  PubMed  CAS  Google Scholar 

  • Walsh RB, Clifton D, Horak J, Fraenkel DG (1991) Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression. Genetics 128:521–527

    PubMed  CAS  Google Scholar 

  • Walsh RB, Kawasaki G, Fraenkel DG (1983) Cloning of genes that complement yeast hexokinase and glucokinase mutants. J Bacteriol 154(2):1002–1004

    PubMed  CAS  Google Scholar 

  • Wang CL, Landry J, Sternglanz R (2008) A yeast sir2 mutant temperature sensitive for silencing. Genetics 180(4):1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1):e13

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM et al (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5(5):e1000467

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Dietrich FS (2005) Identification and characterization of upstream open reading frames (uORF) in the 5’ untranslated regions (UTR) of genes in Saccharomyces cerevisiae. Curr Genet 48(2):77–87

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sutphin, G.L., Olsen, B.A., Kennedy, B.K., Kaeberlein, M. (2011). Genome-Wide Analysis of Yeast Aging. In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_12

Download citation

Publish with us

Policies and ethics