Skip to main content

Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers?

  • Chapter
Greenhouse Gas Inventories

Abstract

In accordance with the concept that only full accounting of major greenhouse gases corresponds to the goals of the United Nations Framework Convention on Climate Change and its Kyoto Protocol, this paper considers uncertainties of regional (national) terrestrial biota Full Carbon Accounting (FCA), both those already achieved and those expected. We analyze uncertainties of major components of the FCA of forest ecosystems of a large boreal region in Siberia (~300 × 106 ha). Some estimates for forests of other regions and Russia as a whole are used for comparison. The systems integration of available information sources and different types of models within the landscape-ecosystem approach are shown to have enabled an estimation of the major carbon fluxes (Net Primary Production, NPP, and heterotrophic respiration, HR) for the region for a single year at the level of 7–12% (confidential interval, CI, 0.9), Net Ecosystem Production (NEP) of 35–40%, and Net Biome Production (NBP) of 60–80%. The most uncertain aspect is the assessment of change in the soil carbon pool, which limits practical application of a pool-based approach. Regionalization of global process-based models, introduction of climatic data in empirical models, use of an appropriate time period for accounting and reporting, harmonization and multiple constraints of estimates obtained by different independent methods decrease the above uncertainties of NEP and NBP by about half. The results of this study support the idea that FCA of forest ecosystems is relevant in the post-Kyoto international negotiation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker DF, Law RM, Gurney KR, Rayner P, Peylin P, Denning AS, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Masarie K, Prather M, Pak B, Taguchi S, Zhu Z (2006) TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob Biogeochem Cycles 20(1):GB1002.1–GB1002.17

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Beer C, Lucht W, Schmullius C, Shvidenko A (2006) Small net carbon dioxide uptake by Russian forests during 1981–1999. Geophys Res Lett 33:L15403

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10:1756–1766

    Article  Google Scholar 

  • Chen W, Chen J, Liu J, Cihlar J (2000) Approaches for reducing uncertainties in regional forest carbon balance. Glob Biogeochem Cycles 14:827–838

    Article  CAS  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore Iii B, Churkina G, Nemry B, Ruimy A, Schloss AL (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Chang Biol 5:1–15

    Article  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Chang Biol 13:577–590

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, GruM€nwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • FFS’RF (1995) Manual of forest inventory and planning in the forest fund of Russia, field work, vol 1. Federal Forest Service, Moscow (in Russian)

    Google Scholar 

  • French NHF, Goovaerts P, Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. J Geophys Res 109:D14S08

    Google Scholar 

  • Fridland VM (1989) Soil map of the USSR. Committee on Cartography and Geodesy, Moscow

    Google Scholar 

  • Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, Roedenbeck C, Running SW, Santaren JD, Sitch S, Viovy N, Ian Woodward F, Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Glob Chang Biol 13:610–633

    Article  Google Scholar 

  • GCP (2003) Global Carbon Project 2003 Science framework and implementation. Earth System Science Partnership IGBP, IHDP, WCRP, DIVERSITAS. In: Global carbon project report no 1

    Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182

    Article  Google Scholar 

  • Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P (2007) Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Glob Chang Biol 13:1484–1497

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Kowalczyk E, Maki T, Maksyutov S, Peylin P, Prather M, Pak BC, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2003) TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus Ser B Chem Phys Meteorol 55:555–579

    Article  Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Chang Biol 9:500–509

    Article  Google Scholar 

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Agriculture forestry and other land use. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC National Greenhouse Gas Inventories Programme and IGES, vol 4. Japan

    Google Scholar 

  • Isidorov VA, Povarov VG (2001) Phytogenic volatile organic compounds emission by Russian forests. Ecol Chem 9:10–21

    Google Scholar 

  • Kajii Y, Kato S, Streets DG, Tsai NY, Shvidenko A, Nilsson S, McCallum I, Minko NP, Abushenko N, Altyntsev D, Khodzer TV (2002) Boreal forest fires in Siberia in 1998: estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J Geophys Res 107(D24):4745

    Article  Google Scholar 

  • Kirschbaum MUF, Cowie AL (2004) Giving credit where credit is due. A practical method to distinguish between human and natural factors in carbon accounting. Clim Change 67:417–436

    CAS  Google Scholar 

  • Kurganova I (2002) Carbon dioxide emissions from soils of Russian terrestrial ecosystems. In: Interim report IR-02-070, International Institute for Applied System Analysis, Laxenburg, Austria

    Google Scholar 

  • Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes in climate. Glob Chang Biol 11:2090–2102

    Article  Google Scholar 

  • Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob Chang Biol 9:575–584

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  CAS  Google Scholar 

  • Maksyutov S, Machida T, Mukai H, Patra PK, Nakazawa T, Inoue G (2003) Effect of recent observations on Asian CO2 flux estimates by transport model inversions. Tellus Ser B Chem Phys Meteorol 55:522–529

    Article  Google Scholar 

  • McRae DJ, Conard SG, Ivanova GA, Sukhinin AI, Baker SP, Samsonov YN, Blake TW, Ivanov VA, Ivanov AV, Churkina TV, Hao WM, Koutzenogij KP, Kovaleva N (2006) Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia. Mitig Adapt Strategies Glob Chang 11:45–74

    Article  Google Scholar 

  • Mitrofanov DP (1977) Chemical composition of forest plant in Siberia. Russian Academy of Sciences, Novosibirsk (in Russian)

    Google Scholar 

  • Moncrieff JB, Malhi Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Glob Chang Biol 2:231–240

    Article  Google Scholar 

  • Mukhortova L (2008) Decomposition of organic matter and carbon fluxes in forest ecosystems of Siberia. In: Unpublished manuscript, International Institute for Applied Systems Analysis, Laxenburg, Austria

    Google Scholar 

  • Newell RG, Stavins RN (2000) Climate change and forest sinks: factors affecting the costs of carbon sequestration. J Environ Econ Manage 40:211–235

    Article  Google Scholar 

  • Nilsson S, Shvidenko A, Jonas M, McCallum I, Thomson A, Balzter H (2007) Uncertainties of a regional terrestrial biota full carbon account: a systems analysis. Water Air Soil Pollut Focus 7:425–441

    Article  CAS  Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Chang Biol 9:525–535

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583

    Article  CAS  Google Scholar 

  • Patra PK, Gurney KR, Denning AS, Maksyutov S, Nakazawa T, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung I, Gloor M, Heimann M, Higuchi K, John J, Law RM, Maki T, Pak BC, Peylin P, Prather M, Rayner PJ, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2006) Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean-only sites versus all-sites observational networks. Geophys Res Lett 33(5):L05814.1–L05814.5

    Google Scholar 

  • Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Chang Biol 13:788–803

    Article  Google Scholar 

  • Schmullius C, Santoro M (2005) SIBERIA-II. Multi-sensor concepts for greenhouse gas accounting of Northern Eurasia. Contract number EVG1-CT-2001-0048, EC Deliverable, Final Report, In EC Environment and Climate Program

    Google Scholar 

  • Schwalm CR, Black TA, Morgenstern K, Humphreys ER (2007) A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence. Glob Chang Biol 13:370–385

    Article  Google Scholar 

  • Shvidenko A, Nilsson S (2000) Fire and the carbon budget of Russian forests. In: Kasischke ES, Stock BJ (eds) Fire, climate change, and carbon cycling in the boreal forest. Springer, Berlin, pp 289–311

    Google Scholar 

  • Shvidenko A, Nilsson S (2002) Dynamics of Russian forests and the carbon budget in 1961–1998: an assessment based on long-term forest inventory data. Clim Change 55:5–37

    Article  CAS  Google Scholar 

  • Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus Ser B Chem Phys Meteorol 55:391–415

    Article  Google Scholar 

  • Shvidenko A, Schepaschenko D, Nilsson S, Bouloui Y (2004) A system of models of growth and productivity of forests of Russia. Tables and models of bioproductivity. Forestry Management 2:40–44 (in Russian)

    Google Scholar 

  • Shvidenko A, McCallum I, Nilsson S (2005) Data, results and assessment of full greenhouse gas accounting for the major GHG’s for 2002/2003. In: Siberia II (Multi-sensor concept for greenhouse gas accounting in Northern Eurasia) 5th Framework Programme, Generic Activity 72: Development of Generic Earth Observation Technologies, Laxenburg, Austria

    Google Scholar 

  • Shvidenko A, Schepaschenko D, Nilsson S, Bouloui Y (2007) Semi-empirical models for assessing biological productivity of Northern Eurasian forests. Ecol Model 204:163–179

    Article  Google Scholar 

  • Shvidenko A, Schepaschenko D, Nilsson S (2008a) Materials for learning current biological production of Russian forests. In: International seminar on sustainable management of Russian forests, December 6 to 7, 2007, Proceedings, Krasnoyarsk, Russia, pp 7–37 (in Russian)

    Google Scholar 

  • Shvidenko AZ, Schepashchenko DG, Vaganov EA, Nilsson S (2008b) Net primary production of forest ecosystems of Russia: a new estimate. Dokl Earth Sci 421:1009–1012

    Article  Google Scholar 

  • Soja AJ, Cofer WR, Shugart HH, Sukhinin AI, Stackhouse PW Jr, McRae DJ, Conard SG (2004) Estimating fire emissions and disparities in boreal Siberia (1998–2002). J Geophys Res 109:D14S06

    Google Scholar 

  • Usoltsev VA (1998) Forming databanks about live biomass of forests. Russian Academy of Sciences, Ekaterinburg

    Google Scholar 

  • Usoltsev VA (2007) Biological productivity of Northern Eurasia’s forests. Russian Academy of Sciences, Ekaterinburg

    Google Scholar 

  • Utkin AI, Zamolodchikov DG, Pryazhnikov AA (2003) Methods for determining carbon deposition in phytomass and net productivity of forests: an example of Belarus. Lesovedenie 1:48–57

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Article  Google Scholar 

  • Waggoner, PE (2009) Forest inventories. Discrepancies and uncertainties. Discussion paper RFF DP 09-29. Resources for the Future, Washington DC. Available at http://www.rff.org/RFF/Documents/RFF-DP-09-29.pdf

  • Zamolodchikov DG, Utkin AI (2000) A system of conversion relations for calculating net primary production of forest ecosystems by growing stocks. Lesovedenie 6:54–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Shvidenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Shvidenko, A., Schepaschenko, D., McCallum, I., Nilsson, S. (2010). Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers?. In: Jonas, M., Nahorski, Z., Nilsson, S., Whiter, T. (eds) Greenhouse Gas Inventories. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1670-4_9

Download citation

Publish with us

Policies and ethics