Skip to main content

Astrobiological remote sensing with circular polarization

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

One of the main drivers of astrobiology is the search for life in the Universe. Important evidence relevant to extraterrestrial life is the existence in space of organic molecules of prebiological or biological significance. Such molecules are often characterized by a special type of asymmetry called “homochirality” (domination of molecules of a specific handedness). This results in optical activity of materials containing such molecules. Due to optical activity, the light scattered by such materials is characterized by non-zero circular polarization. We review existing observations of circular polarization in space, including observations of molecular clouds, comets, and the planet Mars. We also review laboratory measurements of light scattered by biological (e.g., bacteria and leaves) and non-biological (minerals) samples. These reveal distinctive features in the circular polarization spectra in absorption bands for the biological samples. We also consider theoretical simulations of light scattering by homochiral materials. Significant progress in this direction has been achieved after the development of the superposition T-matrix code for clusters of optically-active spheres. This allows us to simulate light scattering by biological objects, e.g., colonies of bacteria, and by materials of prebiological value, e.g., cometary dust. We explore how circular polarization depends on the porosity and size of aggregates as well as on the degree of their homochirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J., 2000: Circular polarization and the origin of biomolecular homochirality. In G. Lemarchand and K. Meech, Eds., Bioastronomy 99: A New Era in the Search for Life (Astronomical Society of the Pacific, San Francisco), pp. 349 354.

    Google Scholar 

  2. Bailey, J., 2004: Extraterrestrial chirality. In R. P. Norris and F. H. Stootman, Eds., Bioastronomy 2002: Life among the Stars (Astronomical Society of the Pacific, San Francisco), pp. 139144.

    Google Scholar 

  3. Bohren, C. F., 1975: Scattering of electromagnetic waves by an optically active spherical shell. J. Chem. Phys. 62, 1566–1571.

    Article  Google Scholar 

  4. Bohren, C. F., and D. Huffman, 1983: Absorption and Scattering of Light by Small Particles (Wiley, New York).

    Google Scholar 

  5. Boehnhardt, H., and ESO DI team, 2005: The Deep Impact campaign at ESO: dust and nucleus characterization. In IAU symposium ACM-2005, Vol. 229 (Buzios, Brazil).

    Google Scholar 

  6. Bonner, W. A., and B. D. Bean, 2000: Asymmetric photolysis with elliptically polarized light. Orig. Life Evol. Biosph. 30, 513–517.

    Article  Google Scholar 

  7. Cerf, C., and A. Jorissen, 2000: Is amino-acid homochirality due to asymmetric photolysis in space? Space Sci. Rev. 92, 603–612.

    Google Scholar 

  8. Combi, M. R., K. Kabin, D. L. Dezeeuw, et al., 1997: Dust-gas interrelations in comets: observations and theory. Earth Moon Planets 79, 275–306.

    Article  Google Scholar 

  9. Cravens, T. E., and T. I. Gombosi, 2004: Cometary magnetospheres: a tutorial. Adv. Space Res. 33, 1968–1976.

    Article  Google Scholar 

  10. Cronin, J. R., and S. Pizzarello, 1997: Enantiomeric excesses in meteoritic amino acids. Science 275, 951–955.

    Article  Google Scholar 

  11. Cronin, J. R., and S. Pizzarello, 1999: Amino acid enantiomeric excesses in meteorites: origin and significance. Adv. Space Res. 23, 293–299.

    Article  Google Scholar 

  12. Dollfus, A., and J. -L. Suchail, 1987: Polarimetry of grains in the coma of P/Halley. I. Observations. Astron. Astrophys. 187, 669–688.

    Google Scholar 

  13. Fernandez, Y. R., D. D. Wellnitz, M. W. Buie, et al., 1999: The inner coma and nucleus of Comet Hale–Bopp: results from a stellar occultation. Icarus 140, 205–220.

    Article  Google Scholar 

  14. Guirado, D., J. W. Hovenier, and F. Moreno, 2007: Circular polarization of light scattered by asymmetrical particles. J. Quant. Spectrosc. Radiat. Transfer 106, 63–73.

    Article  Google Scholar 

  15. Hough, J. H., J. Bailey, A. Chrysostomou, et al., 2001: Circular polarization in starforming regions: possible implications for homochirality. Adv. Space Res. 27, 313322.

    Article  Google Scholar 

  16. Israelevich, P., A. Ershkovich, T. Gombosi, et al., 2003: Fine structure of the diamagnetic cavity boundary in comet Halley. J. Geophys. Res. 108, 12–19.

    Google Scholar 

  17. Kelly, S. M., and N. C. Price, 2000: The use of circular dichroism in the investigation of protein structure and function. Current Protein Peptide Sci. 1, 349–384.

    Article  Google Scholar 

  18. Kemp, J. C., R. D. Wolstencroft, and J. B. Swedlund, 1971: Circular polarization: Jupiter and other planets. Nature 232, 165–168.

    Article  Google Scholar 

  19. Kemp, J. C., 1974: Circular polarization of planets. In T. Gehrels, Ed., Planets, Stars, and Nebulae: Studied with Photopolarimetry (University of Arizona Press, Tucson, AZ), pp. 607–616.

    Google Scholar 

  20. Kolokolova, L., H. Kimura, and I. Mann, 2004: Characterization of dust particles using photopolarimetric data: example of cometary dust. In G. Videen, Ya. Yatskiv, and M. Mishchenko, Eds., Photopolarimetry in Remote Sensing (Kluwer, Dordrecht), pp. 431–454.

    Google Scholar 

  21. Kolokolova, L., M. Hanner, A.-Ch. Levasseur-Regourd, and B. Å. S. Gustafson, 2004: Physical properties of cometary dust from light scattering and emission. In M. C. Festou, H. U. Keller, and H. A. Weaver, Eds., Comets II (University of Arizona Press, Tucson, AZ), pp. 577–605.

    Google Scholar 

  22. Kolokolova, L., H. Kimura, K. Ziegler, and I. Mann, 2006: Light-scattering properties of random-oriented aggregates: do they represent the properties of an ensemble of aggregates? J. Quant. Spectrosc. Radiat. Transfer 100, 199–206.

    Article  Google Scholar 

  23. Kolokolova, L., 2011: Photopolarimetric remote sensing of aggregates in cosmic dust. In M. I. Mishchenko, Ya. S. Yatskiv, V. K. Rosenbush, and G. Videen, Eds., Polarimetric Detection, Characterization, and Remote Sensing (Springer, Berlin) (this volume).

    Google Scholar 

  24. Lazarian, A., 2003: Magnetic fields via polarimetry: progress of grain alignment theory. J. Quant. Spectrosc. Radiat. Transfer 79–80, 881–902.

    Article  Google Scholar 

  25. Lazarian, A., 2009: Quantitative theory of grain alignment: probing grain environment and grain composition. In Th. Henning, E. Grün, and J. Steinacker, Eds., Cosmic Dust – Near and Far (Astronomical Society of the Pacific, San Francisco), pp. 482 497.

    Google Scholar 

  26. Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A 13, 2266–2278.

    Article  Google Scholar 

  27. Mackowski, D. W., L. Kolokolova, and W. Sparks, 2011: T-matrix approach to calculating circular polarization of aggregates made of optically active materials. J. Quant. Spectrosc. Radiat. Transfer 112, in press.

    Google Scholar 

  28. Manset, N., and P. Bastien, 2000: Polarimetric observations of comets C/1995 O1 Hale–Bopp and C/1996 B2 Hyakutake. Icarus 145, 203–219.

    Article  Google Scholar 

  29. Mason, S. F., 1982: Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, New York).

    Google Scholar 

  30. McDonnell, J. A. M., G. C. Evans, S. T. Evans, et al., 1987: The dust distribution within the inner coma of comet P/Halley 1982i – encounter by Giotto’s impact detectors. Astron. Astrophys. 187, 719–741.

    Google Scholar 

  31. Pang, K. D., S. F. S. Chun, J. M. Ajello, et al., 1982: Organic and inorganic interpretations of the martian UV–IR reflectance spectrum. Nature 295, 43–46.

    Article  Google Scholar 

  32. Petrov, D., G. Videen, Yu. Shkuratov, and V. Kaydash, 2007: Analytic T-matrix solution of light scattering from capsule and bi-sphere particles: applications to spore detection. J. Quant. Spectrosc. Radiat. Transfer 108, 81–105.

    Article  Google Scholar 

  33. Pizzarello, S., and G. R. Cronin, 2000: Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta 64, 329–338.

    Article  Google Scholar 

  34. Pizzarello, S., and G. Cooper, 2001: Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite. Meteorit. Planet. Sci. 36, 897–909.

    Article  Google Scholar 

  35. Pizzarello, S., 2004: Chemical evolution and meteorites: an update. Orig. Life Evol. Biosph. 34, 25–34.

    Article  Google Scholar 

  36. Pospergelis, M. M., 1969: Spectroscopic measurements of the four Stokes parameters for light scattered by natural objects. Soviet Astron. 12, 973–977.

    Google Scholar 

  37. Rosenbush, V., N. Shakhovskoy, and A. Rosenbush, 1999: Polarimetry of Comet Hale–Bopp: linear and circular polarization, stellar occultation. Earth Moon Planets 78, 373–379.

    Google Scholar 

  38. Rosenbush, V., L. Kolokolova, A. Lazarian, et al., 2007: Circular polarization in comets: observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus 186, 317–330.

    Article  Google Scholar 

  39. Rosenbush, V., N. Kiselev, N. Shakhovskoy, et al., 2007: Circular and linear polarization of comet C/2001 Q4 (NEAT). Why circular polarization in comets is predominantly left-handed? In G. Videen, M. Mishchenko, M. P. Mengüç, and N. Zakharova, Eds., Peer-Reviewed Abstracts of the Tenth Conference on Electromagnetic &; Light Scattering (Bodrum, Turkey), pp.181–184.

    Google Scholar 

  40. Schreier, P., A. Bernreuther, and M. Huffer, 1995: Analysis of Chiral Organic Molecules: Methodology and Applications (Walter de Gruyter Publ., Berlin).

    Google Scholar 

  41. Sparks, W., J. Hough, and L. Bergeron, 2005: A search for chiral signatures on Mars. Astrobiology 5, 737–748.

    Article  Google Scholar 

  42. Sparks, W., J. H. Hough, L. Kolokolova, et al., 2009: Circular polarization in scattered light as a possible biomarker. J. Quant. Spectrosc, Radiat. Transfer 110, 1771–1779.

    Google Scholar 

  43. Sparks, W., J. H. Hough, T. A. Germer, et al., 2010: Detection of circular polarization in light scattered from photosynthetic microbes. Proc. Natl. Acad. Sci. USA 106, 7816–7821.

    Article  Google Scholar 

  44. Tomasko, M. G., B. Archinal, T. Becker, et al., 2005: Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438, 765–778.

    Article  Google Scholar 

  45. Tomasko, M. G., L. Doose, S. Engel, et al., 2008: A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669–707.

    Article  Google Scholar 

  46. Tozzi, G. P., S. Bagnulo, H. Boehnhardt, et al., 2006: Observations of comet 73P/SW3 at its closest approach to the Earth. In European Planetary Science Congress 2006 (Berlin, Germany), p. 725.

    Google Scholar 

  47. Whitney, B. A., and M. J. Wolff, 2002: Scattering and absorption by aligned grains in circumstellar environments. Astrophys. J. 574, 205–231.

    Article  Google Scholar 

  48. Zubko, E., Yu. Shkuratov, M. Hart, et al., 2003: Backscattering and negative polarization of agglomerate particles. Opt. Lett. 28, 1504–1506.

    Article  Google Scholar 

  49. Zubko, E., A. Ovcharenko, S. Bondarenko, et al., 2004: Backscattering of agglomerate particles. Proc. SPIE 5617, 407–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmilla Kolokolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kolokolova, L., Sparks, W., Mackowski, D. (2011). Astrobiological remote sensing with circular polarization. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_11

Download citation

Publish with us

Policies and ethics