Skip to main content

How Transcription Factors Identify Regulatory Sites in Genomic Sequence

  • Chapter
  • First Online:
A Handbook of Transcription Factors

Part of the book series: Subcellular Biochemistry ((SCBI,volume 52))

Abstract

Binding of transcription factors to functional sites is a fundamental step in transcriptional regulation. In this chapter, we discuss how transcription factors are thought to achieve specificity to their functional targets, despite their typically low concentrations and degenerate binding specificities, and the fact that in large genomes their functional binding sites must compete with their widespread alternative binding sites. We highlight the importance of the chromatin structure context of the binding sites in this process, and its dependency on the genomic DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC genomics 7:133

    Article  PubMed  Google Scholar 

  2. Wunderlich Z, Mirny LA (2009) Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet 25:434–440

    Article  PubMed  CAS  Google Scholar 

  3. Kao-Huang Y, Revzin A, Butler AP, O’Conner P, Noble DW, von Hippel PH (1977) Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. Proc Natl Acad Sci U S A 74:4228–4232

    Article  PubMed  CAS  Google Scholar 

  4. von Hippel PH, Revzin A, Gross CA, Wang AC (1974) Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc Natl Acad Sci U S A 71:4808–4812

    Article  Google Scholar 

  5. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:9

    Article  Google Scholar 

  6. Lidor Nili E, Field Y, Lubling Y, Widom J, Oren M, Segal E (2010) p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res 20:1361–1368

    Article  PubMed  Google Scholar 

  7. Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR, Struhl K (2006) Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol Cell 24:593–602

    Article  PubMed  CAS  Google Scholar 

  8. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  9. Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  10. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496

    Article  PubMed  CAS  Google Scholar 

  11. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  PubMed  CAS  Google Scholar 

  12. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    Article  PubMed  CAS  Google Scholar 

  13. Anderson JD, Widom J (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 296:979–987

    Article  PubMed  CAS  Google Scholar 

  14. Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254:130–149

    Article  PubMed  CAS  Google Scholar 

  15. Zlatanova J, Seebart C, Tomschik M (2008) The linker-protein network: control of nucleosomal DNA accessibility. Trends Biochem Sci 33:247–253

    Article  PubMed  CAS  Google Scholar 

  16. Lorch Y, Maier-Davis B, Kornberg RD (2010) Mechanism of chromatin remodeling. Proc Natl Acad Sci U S A 107:3458–3462

    Article  PubMed  CAS  Google Scholar 

  17. Iyer V, Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14:2570–2579

    PubMed  CAS  Google Scholar 

  18. Lam FH, Steger DJ, O’Shea EK (2008) Chromatin decouples promoter threshold from dynamic range. Nature 453:246–250

    Article  PubMed  CAS  Google Scholar 

  19. Poirier MG, Bussiek M, Langowski J, Widom J (2008) Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 379:772–786

    Article  PubMed  CAS  Google Scholar 

  20. Zlatanova J, Leuba SH, Yang G, Bustamante C, van Holde K (1994) Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation. Proc Natl Acad Sci U S A 91:5277–5280

    Article  PubMed  CAS  Google Scholar 

  21. Graziano V, Gerchman SE, Ramakrishnan V (1988) Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin. J Mol Biol 203:997–1007

    Article  PubMed  CAS  Google Scholar 

  22. Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872–8877

    Article  PubMed  CAS  Google Scholar 

  23. Braunschweig U, Hogan GJ, Pagie L, van Steensel B (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28:3635–3645

    Article  PubMed  CAS  Google Scholar 

  24. Clausell J, Happel N, Hale TK, Doenecke D, Beato M (2009) Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PloS ONE 4:e0007243

    Article  PubMed  Google Scholar 

  25. Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, He C, Moore SC, Ausio J (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J Biol Chem 276:12764–12768

    Article  PubMed  CAS  Google Scholar 

  27. Karymov MA, Tomschik M, Leuba SH, Caiafa P, Zlatanova J (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J 15:2631–2641

    Article  PubMed  CAS  Google Scholar 

  28. Corona DF, Siriaco G, Mcclymont SA, Armstrong JA, Snarskaya N, McClymont SA, Scott MP, Tamkun JW (2007) ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol 5:e232

    Article  PubMed  Google Scholar 

  29. Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 16:655–661

    Article  PubMed  CAS  Google Scholar 

  30. Postnikov Y, Bustin M (2010) Regulation of chromatin structure and function by HMGN proteins. Biochim Biophys Acta 1799:62–68

    PubMed  CAS  Google Scholar 

  31. Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan N, et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    Article  PubMed  CAS  Google Scholar 

  33. Dekker J (2008) Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 283:34532–34540

    Article  PubMed  CAS  Google Scholar 

  34. Downs JA, Kosmidou E, Morgan A, Jackson SP (2003) Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol Cell 11:1685–1692

    Article  PubMed  CAS  Google Scholar 

  35. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  PubMed  CAS  Google Scholar 

  36. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4:e1000216

    Article  PubMed  Google Scholar 

  37. Tillo D, et al. (2010) High nucleosome occupancy is encoded at human regulatory sequences. PLoS ONE 5:e9129

    Article  PubMed  Google Scholar 

  38. Li X, et al. (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6:e27

    Article  PubMed  Google Scholar 

  39. Field Y, Fondufe-Mittendorf Y, Moore IK, Mieczkowski P, Kaplan N, Lubling Y, Lieb JD, Widom J, Segal E (2009) Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat Genet 41:438–445

    Article  PubMed  CAS  Google Scholar 

  40. Xi H, et al. (2007) Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3:e136

    Article  PubMed  Google Scholar 

  41. Landolin JM, Johnson DS, Trinklein ND, Aldred SF, Medina C, Shulha H, Weng Z, Myers RM (2010) Sequence features that drive human promoter function and tissue specificity. Genome Res 20:890–898

    Article  PubMed  CAS  Google Scholar 

  42. Giniger E, Ptashne M (1988) Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad Sci U S A 85:382–386

    Article  PubMed  CAS  Google Scholar 

  43. Merika M, Orkin SH (1995) Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol Cell Biol 15:2437–2447

    PubMed  CAS  Google Scholar 

  44. Zhang Z, Fuller GM (1997) The competitive binding of STAT3 and NF-kappaB on an overlapping DNA binding site. Biochem Biophys Res Commun 237:90–94

    Article  PubMed  Google Scholar 

  45. Darieva Z, Clancy A, Bulmer R, Williams E, Pic-Taylor A, Morgan BA, Sharrocks AD (2010) A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell 38:29–40

    Article  PubMed  CAS  Google Scholar 

  46. Polach KJ, Widom J (1996) A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol 258:800–812

    Article  PubMed  CAS  Google Scholar 

  47. Segal E, Widom J (2009) From DNA sequence to transcriptional behaviour: a quantitative approach. Nat Rev Genet 10:443–456

    Article  PubMed  CAS  Google Scholar 

  48. Harbison CT, et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  PubMed  CAS  Google Scholar 

  49. Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat Biotechnol 17:573–577

    Article  PubMed  CAS  Google Scholar 

  50. Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science (New York, NY) 315:233–237

    Article  CAS  Google Scholar 

  51. Morozov AV, Fortney K, Gaykalova DA, Studitsky VM, Widom J, Siggia ED (2009) Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res 37:4707–4722

    Article  PubMed  CAS  Google Scholar 

  52. Sinha S, Adler AS, Field Y, Chang HY, Segal E (2008) Systematic functional characterization of cis-regulatory motifs in human core promoters. Genome Res 18:477–488

    Article  PubMed  CAS  Google Scholar 

  53. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451:535–540

    Article  PubMed  CAS  Google Scholar 

  54. Venter U, Svaren J, Schmitz J, Schmid A, Hörz W (1994) A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J 13:4848–4855

    PubMed  CAS  Google Scholar 

  55. Zhu C, et al. (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:556–566

    Article  PubMed  CAS  Google Scholar 

  56. Raveh-Sadka T, Levo M, Segal E (2009) Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res 19:1480–1496

    Article  PubMed  CAS  Google Scholar 

  57. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28:817–825

    Article  PubMed  CAS  Google Scholar 

  58. Heintzman ND, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  PubMed  CAS  Google Scholar 

  59. Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Field, Y., Sharon, E., Segal, E. (2011). How Transcription Factors Identify Regulatory Sites in Genomic Sequence. In: Hughes, T. (eds) A Handbook of Transcription Factors. Subcellular Biochemistry, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9069-0_9

Download citation

Publish with us

Policies and ethics