Skip to main content

Morphology of the Adhesive System in the Sandcastle Worm, Phragmatopoma californica

  • Chapter
Biological Adhesive Systems

Abstract

The marine Sandcastle worm (P. californica) and related species live in composite mineralized tubes for shelter. They gather the mineral phase for free from the environment as sand grains and seashell bits with a crown of ciliated tentacles. The captured mineral particles are conveyed for inspection to the building organ — a pincer-shaped pair of dexterous palps in front of the mouth (Fig. 10.1). A dab of proteinaceous adhesive (Jensen and Morse, 1988) is secreted from the building organ onto suitable particles as they are pressed onto the end of the tube. The major protein components of the adhesive are a group of heterogeneous proteins, referred to as Pc3x, characterized by serial runs of 10–14 serine residues punctuated with single tyrosine residues (Zhao et al., 2005). Phosphorylation of more than 90% of the serines (Stewart et al., 2004) makes the Pc3 proteins polyacidic (pI<3). Other potential protein components identified biochemically (Waite et al., 1992) and by sequencing random cDNAs from an adhesive gland library (Endrizzi and Stewart, 2009) are generally polybasic with predicted pIs greater than 9. Amino acid analysis of secreted glue revealed that, in total, close to 50% of the adhesive protein residues are charged when serine phosphorylation is taken into account. The adhesive also contains Mg2+ and Ca2+ and a large fraction of the tyrosines are post-translationally hydroxylated to form 3,4-dihydroxyphenylalanine (DOPA), a residue shared with the adhesive plaque proteins of the mussel (Waite and Tanzer, 1981). Phosphates and o-dihydroxyphenols are well-known adhesion promoters.

Phragmatopoma californica. At the left side of the photograph the tentacles and operculum of a sandcastle worm protrude from the end of a tube rebuilt with white 0.5 µm zirconium oxide beads. The worm on the right has been removed from its tube. The larger arrow indicates the building organ. The smaller arrow indicates the ventral shield region. Scale bar: 5 mm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. Journal of Biological Chemistry 118: 531–537.

    CAS  Google Scholar 

  • Bergeron JA and Singer M (1958) Metachromasy: an experimental and theoretical reevaluation. Journal of Biophysical and Biochemical Cytology 4(4): 433–457.

    Article  CAS  Google Scholar 

  • Bungenberg de Jong HG (1949) Crystallization — coacervation — flocculation. In: Kruyt HR (ed) Colloid Science, vol. II. Elsevier Publishing Company, New York: pp 232–255.

    Google Scholar 

  • Endrizzi BJ and Stewart RJ (2009) Glueomics: an expression survey of the adhesive gland of the sandcastle worm. The Journal of Adhesion 85: 546–559.

    Article  CAS  Google Scholar 

  • Gruet Y, Vovelle J, and Grasset M (1987) Composante biominerale du ciment du tube ches Sabellaria alveolata (L.) Annelide Polychete. Canadian Journal of Zoology 65: 837–842.

    Article  CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriological Reviews 30(4): 772–794.

    CAS  Google Scholar 

  • Jensen RA and Morse DE (1988) The bioadhesive of Phragmatopoma californica tubes: a silk-like cement containing L-DOPA. Journal of Comparative Physiology B 158: 317–324.

    Article  CAS  Google Scholar 

  • Lofstrom A, Jonsson G, Wiesel FA, and Fuxe K (1976) Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. II. Turnover changes in hormonal states. Journal of Histochemistry and Cytochemistry 24(2): 430–442.

    Article  CAS  Google Scholar 

  • Shao H and Stewart RJ (2010) Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Advanced Materials 22(6): 729–733.

    Article  CAS  Google Scholar 

  • Shao H, Bachus KN, and Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromolecular Bioscience 9(5): 464–471.

    Article  CAS  Google Scholar 

  • Stevens MJ, Steren RE, Hlady V, and Stewart RJ (2007) Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23(9): 5045–5049.

    Article  CAS  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, and Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. Journal of Experimental Biology 207(Pt 26): 4727–4734.

    Article  CAS  Google Scholar 

  • Truchet M and Vovelle J (1977) Study of the element secretory glands of a tubicolous polychaete (Pectinaria (= Lagis) koreni) with the help of electron microprobe and ion microanalyzer. Calcified Tissue Research 24(3): 231–238.

    Article  CAS  Google Scholar 

  • Vovelle J (1965) Le tube de Sabellaria alveolata (L.) Annelide Polychete Hermellidae et son ciment. Etude ecologique, experimentale, histologique et histochimique. Archives de Zoologie Experimentale & Generale 106: 1–187.

    Google Scholar 

  • Vovelle J (1979) Les Glandes Cementaires de Petta Pusilla Malmgren, Polychete Tubicole Amphictenidae, et leur Secretion Organo-minerale. Archives de Zoologie Experimentale & Generale 120: 219–246.

    CAS  Google Scholar 

  • Vovelle J and Grasset M (1976) Les Pectinaires et leur ciment. Bulletin de la Société Zoologique de France 101(5): 1022–1023.

    Google Scholar 

  • Waite JH, Jensen RA, and Morse DE (1992) Cement precursor proteins of the reef-building polychaete Phragmatopoma californica (Fewkes). Biochemistry 31(25): 5733–5738.

    Article  CAS  Google Scholar 

  • Waite JH and Tanzer ML (1981) Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 212(4498): 1038–1040.

    Article  CAS  Google Scholar 

  • Zhao H, Sun C, Stewart RJ, and Waite JH (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. Journal of Biological Chemistry 280(52): 42938–42944.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Wang, C.S., Svendsen, K.K., Stewart, R.J. (2010). Morphology of the Adhesive System in the Sandcastle Worm, Phragmatopoma californica . In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_10

Download citation

Publish with us

Policies and ethics